国产精品电影_久久视频免费_欧美日韩国产激情_成年人视频免费在线播放_日本久久亚洲电影_久久都是精品_66av99_九色精品美女在线_蜜臀a∨国产成人精品_冲田杏梨av在线_欧美精品在线一区二区三区_麻豆mv在线看

支撐百萬并發(fā)的數(shù)據(jù)庫(kù)架構(gòu)如何設(shè)計(jì)?

開發(fā) 架構(gòu) 開發(fā)工具
這篇文章,我們來聊一下對(duì)于一個(gè)支撐日活百萬用戶的高并系統(tǒng),他的數(shù)據(jù)庫(kù)架構(gòu)應(yīng)該如何設(shè)計(jì)?

這篇文章,我們來聊一下對(duì)于一個(gè)支撐日活百萬用戶的高并系統(tǒng),他的數(shù)據(jù)庫(kù)架構(gòu)應(yīng)該如何設(shè)計(jì)?

看到這個(gè)題目,很多人***反應(yīng)就是:分庫(kù)分表啊!但是實(shí)際上,數(shù)據(jù)庫(kù)層面的分庫(kù)分表到底是用來干什么的,他的不同的作用如何應(yīng)對(duì)不同的場(chǎng)景,我覺得很多同學(xué)可能都沒搞清楚。

用一個(gè)創(chuàng)業(yè)公司的發(fā)展作為背景引入

假如我們現(xiàn)在是一個(gè)小創(chuàng)業(yè)公司,注冊(cè)用戶就 20 萬,每天活躍用戶就 1 萬,每天單表數(shù)據(jù)量就 1000,然后高峰期每秒鐘并發(fā)請(qǐng)求最多就 10。

天哪!就這種系統(tǒng),隨便找一個(gè)有幾年工作經(jīng)驗(yàn)的高級(jí)工程師,然后帶幾個(gè)年輕工程師,隨便干干都可以做出來。

因?yàn)檫@樣的系統(tǒng),實(shí)際上主要就是在前期快速的進(jìn)行業(yè)務(wù)功能的開發(fā),搞一個(gè)單塊系統(tǒng)部署在一臺(tái)服務(wù)器上,然后連接一個(gè)數(shù)據(jù)庫(kù)就可以了。

接著大家就是不停的在一個(gè)工程里填充進(jìn)去各種業(yè)務(wù)代碼,盡快把公司的業(yè)務(wù)支撐起來。

如下圖所示:

結(jié)果呢,沒想到我們運(yùn)氣這么好,碰上個(gè)優(yōu)秀的 CEO 帶著我們走上了康莊大道!

公司業(yè)務(wù)發(fā)展迅猛,過了幾個(gè)月,注冊(cè)用戶數(shù)達(dá)到了 2000 萬!每天活躍用戶數(shù) 100 萬!每天單表新增數(shù)據(jù)量達(dá)到 50 萬條!高峰期每秒請(qǐng)求量達(dá)到 1 萬!

同時(shí)公司還順帶著融資了兩輪,估值達(dá)到了驚人的幾億美金!一只朝氣蓬勃的幼年獨(dú)角獸的節(jié)奏!

好吧,現(xiàn)在大家感覺壓力已經(jīng)有點(diǎn)大了,為啥呢?因?yàn)槊刻靻伪硇略?50 萬條數(shù)據(jù),一個(gè)月就多 1500 萬條數(shù)據(jù),一年下來單表會(huì)達(dá)到上億條數(shù)據(jù)。

經(jīng)過一段時(shí)間的運(yùn)行,現(xiàn)在咱們單表已經(jīng)兩三千萬條數(shù)據(jù)了,勉強(qiáng)還能支撐著。

但是,眼見著系統(tǒng)訪問數(shù)據(jù)庫(kù)的性能怎么越來越差呢,單表數(shù)據(jù)量越來越大,拖垮了一些復(fù)雜查詢 SQL 的性能啊!

然后高峰期請(qǐng)求現(xiàn)在是每秒 1 萬,咱們的系統(tǒng)在線上部署了 20 臺(tái)機(jī)器,平均每臺(tái)機(jī)器每秒支撐 500 請(qǐng)求,這個(gè)還能抗住,沒啥大問題。但是數(shù)據(jù)庫(kù)層面呢?

如果說此時(shí)你還是一臺(tái)數(shù)據(jù)庫(kù)服務(wù)器在支撐每秒上萬的請(qǐng)求,負(fù)責(zé)任的告訴你,每次高峰期會(huì)出現(xiàn)下述問題:

  • 你的數(shù)據(jù)庫(kù)服務(wù)器的磁盤 IO、網(wǎng)絡(luò)帶寬、CPU 負(fù)載、內(nèi)存消耗,都會(huì)達(dá)到非常高的情況,數(shù)據(jù)庫(kù)所在服務(wù)器的整體負(fù)載會(huì)非常重,甚至都快不堪重負(fù)了。
  • 高峰期時(shí),本來你單表數(shù)據(jù)量就很大,SQL 性能就不太好,這時(shí)加上你的數(shù)據(jù)庫(kù)服務(wù)器負(fù)載太高導(dǎo)致性能下降,就會(huì)發(fā)現(xiàn)你的 SQL 性能更差了。
  • 最明顯的一個(gè)感覺,就是你的系統(tǒng)在高峰期各個(gè)功能都運(yùn)行的很慢,用戶體驗(yàn)很差,點(diǎn)一個(gè)按鈕可能要幾十秒才出來結(jié)果。
  • 如果你運(yùn)氣不太好,數(shù)據(jù)庫(kù)服務(wù)器的配置不是特別的高的話,弄不好你還會(huì)經(jīng)歷數(shù)據(jù)庫(kù)宕機(jī)的情況,因?yàn)樨?fù)載太高對(duì)數(shù)據(jù)庫(kù)壓力太大了。

多臺(tái)服務(wù)器分庫(kù)支撐高并發(fā)讀寫

首先我們先考慮***個(gè)問題,數(shù)據(jù)庫(kù)每秒上萬的并發(fā)請(qǐng)求應(yīng)該如何來支撐呢?

要搞清楚這個(gè)問題,先得明白一般數(shù)據(jù)庫(kù)部署在什么配置的服務(wù)器上。通常來說,假如你用普通配置的服務(wù)器來部署數(shù)據(jù)庫(kù),那也起碼是 16 核 32G 的機(jī)器配置。

這種非常普通的機(jī)器配置部署的數(shù)據(jù)庫(kù),一般線上的經(jīng)驗(yàn)是:不要讓其每秒請(qǐng)求支撐超過 2000,一般控制在 2000 左右。

控制在這個(gè)程度,一般數(shù)據(jù)庫(kù)負(fù)載相對(duì)合理,不會(huì)帶來太大的壓力,沒有太大的宕機(jī)風(fēng)險(xiǎn)。

所以首先***步,就是在上萬并發(fā)請(qǐng)求的場(chǎng)景下,部署個(gè) 5 臺(tái)服務(wù)器,每臺(tái)服務(wù)器上都部署一個(gè)數(shù)據(jù)庫(kù)實(shí)例。

然后每個(gè)數(shù)據(jù)庫(kù)實(shí)例里,都創(chuàng)建一個(gè)一樣的庫(kù),比如說訂單庫(kù)。此時(shí)在 5 臺(tái)服務(wù)器上都有一個(gè)訂單庫(kù),名字可以類似為:db_order_01,db_order_02,等等。

然后每個(gè)訂單庫(kù)里,都有一個(gè)相同的表,比如說訂單庫(kù)里有訂單信息表,那么此時(shí) 5 個(gè)訂單庫(kù)里都有一個(gè)訂單信息表。

比如 db_order_01 庫(kù)里就有一個(gè) tb_order_01 表,db_order_02 庫(kù)里就有一個(gè) tb_order_02 表。

這就實(shí)現(xiàn)了一個(gè)基本的分庫(kù)分表的思路,原來的一臺(tái)數(shù)據(jù)庫(kù)服務(wù)器變成了 5 臺(tái)數(shù)據(jù)庫(kù)服務(wù)器,原來的一個(gè)庫(kù)變成了 5 個(gè)庫(kù),原來的一張表變成了 5 個(gè)表。

然后你在寫入數(shù)據(jù)的時(shí)候,需要借助數(shù)據(jù)庫(kù)中間件,比如 sharding-jdbc,或者是 mycat,都可以。

你可以根據(jù)比如訂單 id 來 hash 后按 5 取模,比如每天訂單表新增 50 萬數(shù)據(jù),此時(shí)其中 10 萬條數(shù)據(jù)會(huì)落入 db_order_01 庫(kù)的 tb_order_01 表,另外 10 萬條數(shù)據(jù)會(huì)落入 db_order_02 庫(kù)的 tb_order_02 表,以此類推。

這樣就可以把數(shù)據(jù)均勻分散在 5 臺(tái)服務(wù)器上了,查詢的時(shí)候,也可以通過訂單 id 來 hash 取模,去對(duì)應(yīng)的服務(wù)器上的數(shù)據(jù)庫(kù)里,從對(duì)應(yīng)的表里查詢那條數(shù)據(jù)出來即可。

依據(jù)這個(gè)思路畫出的圖如下所示,大家可以看看:

做這一步有什么好處呢?***個(gè)好處,原來比如訂單表就一張表,這個(gè)時(shí)候不就成了 5 張表了么,那么每個(gè)表的數(shù)據(jù)就變成 1/5 了。

假設(shè)訂單表一年有 1 億條數(shù)據(jù),此時(shí) 5 張表里每張表一年就 2000 萬數(shù)據(jù)了。

那么假設(shè)當(dāng)前訂單表里已經(jīng)有 2000 萬數(shù)據(jù)了,此時(shí)做了上述拆分,每個(gè)表里就只有 400 萬數(shù)據(jù)了。

而且每天新增 50 萬數(shù)據(jù)的話,那么每個(gè)表才新增 10 萬數(shù)據(jù),這樣是不是初步緩解了單表數(shù)據(jù)量過大影響系統(tǒng)性能的問題?

另外就是每秒 1 萬請(qǐng)求到 5 臺(tái)數(shù)據(jù)庫(kù)上,每臺(tái)數(shù)據(jù)庫(kù)就承載每秒 2000 的請(qǐng)求,是不是一下子把每臺(tái)數(shù)據(jù)庫(kù)服務(wù)器的并發(fā)請(qǐng)求降低到了安全范圍內(nèi)?

這樣,降低了數(shù)據(jù)庫(kù)的高峰期負(fù)載,同時(shí)還保證了高峰期的性能。

大量分表來保證海量數(shù)據(jù)下的查詢性能

但是上述的數(shù)據(jù)庫(kù)架構(gòu)還有一個(gè)問題,那就是單表數(shù)據(jù)量還是過大,現(xiàn)在訂單表才分為了 5 張表,那么如果訂單一年有 1 億條,每個(gè)表就有 2000 萬條,這也還是太大了。

所以還應(yīng)該繼續(xù)分表,大量分表。比如可以把訂單表一共拆分為 1024 張表,這樣 1 億數(shù)據(jù)量的話,分散到每個(gè)表里也就才 10 萬量級(jí)的數(shù)據(jù)量,然后這上千張表分散在 5 臺(tái)數(shù)據(jù)庫(kù)里就可以了。

在寫入數(shù)據(jù)的時(shí)候,需要做兩次路由,先對(duì)訂單 id hash 后對(duì)數(shù)據(jù)庫(kù)的數(shù)量取模,可以路由到一臺(tái)數(shù)據(jù)庫(kù)上,然后再對(duì)那臺(tái)數(shù)據(jù)庫(kù)上的表數(shù)量取模,就可以路由到數(shù)據(jù)庫(kù)上的一個(gè)表里了。

通過這個(gè)步驟,就可以讓每個(gè)表里的數(shù)據(jù)量非常小,每年 1 億數(shù)據(jù)增長(zhǎng),但是到每個(gè)表里才 10 萬條數(shù)據(jù)增長(zhǎng),這個(gè)系統(tǒng)運(yùn)行 10 年,每個(gè)表里可能才***的數(shù)據(jù)量。

這樣可以一次性為系統(tǒng)未來的運(yùn)行做好充足的準(zhǔn)備,看下面的圖,一起來感受一下:

全局唯一 id 如何生成

在分庫(kù)分表之后你必然要面對(duì)的一個(gè)問題,就是 id 咋生成?因?yàn)橐且粋€(gè)表分成多個(gè)表之后,每個(gè)表的 id 都是從 1 開始累加自增長(zhǎng),那肯定不對(duì)啊。

舉個(gè)例子,你的訂單表拆分為了 1024 張訂單表,每個(gè)表的 id 都從 1 開始累加,這個(gè)肯定有問題了!

你的系統(tǒng)就沒辦法根據(jù)表主鍵來查詢訂單了,比如 id = 50 這個(gè)訂單,在每個(gè)表里都有!

所以此時(shí)就需要分布式架構(gòu)下的全局唯一 id 生成的方案了,在分庫(kù)分表之后,對(duì)于插入數(shù)據(jù)庫(kù)中的核心 id,不能直接簡(jiǎn)單使用表自增 id,要全局生成唯一 id,然后插入各個(gè)表中,保證每個(gè)表內(nèi)的某個(gè) id,全局唯一。

比如說訂單表雖然拆分為了 1024 張表,但是 id = 50 這個(gè)訂單,只會(huì)存在于一個(gè)表里。

那么如何實(shí)現(xiàn)全局唯一 id 呢?有以下幾種方案:

方案一:獨(dú)立數(shù)據(jù)庫(kù)自增 id

這個(gè)方案就是說你的系統(tǒng)每次要生成一個(gè) id,都是往一個(gè)獨(dú)立庫(kù)的一個(gè)獨(dú)立表里插入一條沒什么業(yè)務(wù)含義的數(shù)據(jù),然后獲取一個(gè)數(shù)據(jù)庫(kù)自增的一個(gè) id。拿到這個(gè) id 之后再往對(duì)應(yīng)的分庫(kù)分表里去寫入。

比如說你有一個(gè) auto_id 庫(kù),里面就一個(gè)表,叫做 auto_id 表,有一個(gè) id 是自增長(zhǎng)的。

那么你每次要獲取一個(gè)全局唯一 id,直接往這個(gè)表里插入一條記錄,獲取一個(gè)全局唯一 id 即可,然后這個(gè)全局唯一 id 就可以插入訂單的分庫(kù)分表中。

這個(gè)方案的好處就是方便簡(jiǎn)單,誰都會(huì)用。缺點(diǎn)就是單庫(kù)生成自增 id,要是高并發(fā)的話,就會(huì)有瓶頸的,因?yàn)?auto_id 庫(kù)要是承載個(gè)每秒幾萬并發(fā),肯定是不現(xiàn)實(shí)的了。

方案二:UUID

這個(gè)每個(gè)人都應(yīng)該知道吧,就是用 UUID 生成一個(gè)全局唯一的 id。

好處就是每個(gè)系統(tǒng)本地生成,不要基于數(shù)據(jù)庫(kù)來了。不好之處就是,UUID 太長(zhǎng)了,作為主鍵性能太差了,不適合用于主鍵。

如果你是要隨機(jī)生成個(gè)什么文件名了,編號(hào)之類的,你可以用 UUID,但是作為主鍵是不能用 UUID 的。

方案三:獲取系統(tǒng)當(dāng)前時(shí)間

這個(gè)方案的意思就是獲取當(dāng)前時(shí)間作為全局唯一的 id。但是問題是,并發(fā)很高的時(shí)候,比如一秒并發(fā)幾千,會(huì)有重復(fù)的情況,這個(gè)肯定是不合適的。

一般如果用這個(gè)方案,是將當(dāng)前時(shí)間跟很多其他的業(yè)務(wù)字段拼接起來,作為一個(gè) id,如果業(yè)務(wù)上你覺得可以接受,那么也是可以的。

你可以將別的業(yè)務(wù)字段值跟當(dāng)前時(shí)間拼接起來,組成一個(gè)全局唯一的編號(hào),比如說訂單編號(hào):時(shí)間戳 + 用戶 id + 業(yè)務(wù)含義編碼。

方案四:SnowFlake 算法的思想分析

SnowFlake 算法,是 Twitter 開源的分布式 id 生成算法。其核心思想就是:使用一個(gè) 64 bit 的 long 型的數(shù)字作為全局唯一 id。

這 64 個(gè) bit 中,其中 1 個(gè) bit 是不用的,然后用其中的 41 bit 作為毫秒數(shù),用 10 bit 作為工作機(jī)器 id,12 bit 作為序列號(hào)。

給大家舉個(gè)例子吧,比如下面那個(gè) 64 bit 的 long 型數(shù)字:

  • ***個(gè)部分,是 1 個(gè) bit:0,這個(gè)是無意義的。
  • 第二個(gè)部分是 41 個(gè) bit:表示的是時(shí)間戳。
  • 第三個(gè)部分是 5 個(gè) bit:表示的是機(jī)房 id,10001。
  • 第四個(gè)部分是 5 個(gè) bit:表示的是機(jī)器 id,1 1001。
  • 第五個(gè)部分是 12 個(gè) bit:表示的序號(hào),就是某個(gè)機(jī)房某臺(tái)機(jī)器上這一毫秒內(nèi)同時(shí)生成的 id 的序號(hào),0000 00000000。

①1 bit:是不用的,為啥呢?

因?yàn)槎M(jìn)制里***個(gè) bit 為如果是 1,那么都是負(fù)數(shù),但是我們生成的 id 都是正數(shù),所以***個(gè) bit 統(tǒng)一都是 0。

②41 bit:表示的是時(shí)間戳,單位是毫秒。

41 bit 可以表示的數(shù)字多達(dá) 2^41 - 1,也就是可以標(biāo)識(shí) 2 ^ 41 - 1 個(gè)毫秒值,換算成年就是表示 69 年的時(shí)間。

③10 bit:記錄工作機(jī)器 id,代表的是這個(gè)服務(wù)最多可以部署在 2^10 臺(tái)機(jī)器上,也就是 1024 臺(tái)機(jī)器。

但是 10 bit 里 5 個(gè) bit 代表機(jī)房 id,5 個(gè) bit 代表機(jī)器 id。意思就是最多代表 2 ^ 5 個(gè)機(jī)房(32 個(gè)機(jī)房),每個(gè)機(jī)房里可以代表 2 ^ 5 個(gè)機(jī)器(32 臺(tái)機(jī)器)。

④12 bit:這個(gè)是用來記錄同一個(gè)毫秒內(nèi)產(chǎn)生的不同 id。

12 bit 可以代表的***正整數(shù)是 2 ^ 12 - 1 = 4096,也就是說可以用這個(gè) 12 bit 代表的數(shù)字來區(qū)分同一個(gè)毫秒內(nèi)的 4096 個(gè)不同的 id。

簡(jiǎn)單來說,你的某個(gè)服務(wù)假設(shè)要生成一個(gè)全局唯一 id,那么就可以發(fā)送一個(gè)請(qǐng)求給部署了 SnowFlake 算法的系統(tǒng),由這個(gè) SnowFlake 算法系統(tǒng)來生成唯一 id。

這個(gè) SnowFlake 算法系統(tǒng)首先肯定是知道自己所在的機(jī)房和機(jī)器的,比如機(jī)房 id = 17,機(jī)器 id = 12。

接著 SnowFlake 算法系統(tǒng)接收到這個(gè)請(qǐng)求之后,首先就會(huì)用二進(jìn)制位運(yùn)算的方式生成一個(gè) 64 bit 的 long 型 id,64 個(gè) bit 中的***個(gè) bit 是無意義的。

接著 41 個(gè) bit,就可以用當(dāng)前時(shí)間戳(單位到毫秒),然后接著 5 個(gè) bit 設(shè)置上這個(gè)機(jī)房 id,還有 5 個(gè) bit 設(shè)置上機(jī)器 id。

***再判斷一下,當(dāng)前這臺(tái)機(jī)房的這臺(tái)機(jī)器上這一毫秒內(nèi),這是第幾個(gè)請(qǐng)求,給這次生成 id 的請(qǐng)求累加一個(gè)序號(hào),作為***的 12 個(gè) bit。

最終一個(gè) 64 個(gè) bit 的 id 就出來了,類似于:

這個(gè)算法可以保證說,一個(gè)機(jī)房的一臺(tái)機(jī)器上,在同一毫秒內(nèi),生成了一個(gè)唯一的 id。可能一個(gè)毫秒內(nèi)會(huì)生成多個(gè) id,但是有*** 12 個(gè) bit 的序號(hào)來區(qū)分開來。

下面我們簡(jiǎn)單看看這個(gè) SnowFlake 算法的一個(gè)代碼實(shí)現(xiàn),這就是個(gè)示例,大家如果理解了這個(gè)意思之后,以后可以自己嘗試改造這個(gè)算法。

總之就是用一個(gè) 64 bit 的數(shù)字中各個(gè) bit 位來設(shè)置不同的標(biāo)志位,區(qū)分每一個(gè) id。

SnowFlake 算法的實(shí)現(xiàn)代碼如下:

  1. public class IdWorker { 
  2.   private long workerId; // 這個(gè)就是代表了機(jī)器id 
  3.   private long datacenterId; // 這個(gè)就是代表了機(jī)房id 
  4.   private long sequence; // 這個(gè)就是代表了一毫秒內(nèi)生成的多個(gè)id的***序號(hào) 
  5.   public IdWorker(long workerId, long datacenterId, long sequence) { 
  6.     // sanity check for workerId 
  7.     // 這兒不就檢查了一下,要求就是你傳遞進(jìn)來的機(jī)房id和機(jī)器id不能超過32,不能小于0 
  8.     if (workerId > maxWorkerId || workerId < 0) { 
  9.  
  10.       throw new IllegalArgumentException( 
  11.         String.format("worker Id can't be greater than %d or less than 0",maxWorkerId)); 
  12.     } 
  13.  
  14.     if (datacenterId > maxDatacenterId || datacenterId < 0) { 
  15.  
  16.       throw new IllegalArgumentException( 
  17.         String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId)); 
  18.     } 
  19.     this.workerId = workerId; 
  20.     this.datacenterId = datacenterId; 
  21.     this.sequence = sequence
  22.   } 
  23.   private long twepoch = 1288834974657L; 
  24.   private long workerIdBits = 5L; 
  25.   private long datacenterIdBits = 5L; 
  26.  
  27.   // 這個(gè)是二進(jìn)制運(yùn)算,就是5 bit最多只能有31個(gè)數(shù)字,也就是說機(jī)器id最多只能是32以內(nèi) 
  28.   private long maxWorkerId = -1L ^ (-1L << workerIdBits);  
  29.   // 這個(gè)是一個(gè)意思,就是5 bit最多只能有31個(gè)數(shù)字,機(jī)房id最多只能是32以內(nèi) 
  30.   private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);  
  31.   private long sequenceBits = 12L; 
  32.   private long workerIdShift = sequenceBits; 
  33.   private long datacenterIdShift = sequenceBits + workerIdBits; 
  34.   private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; 
  35.   private long sequenceMask = -1L ^ (-1L << sequenceBits); 
  36.   private long lastTimestamp = -1L; 
  37.   public long getWorkerId(){ 
  38.     return workerId; 
  39.   } 
  40.   public long getDatacenterId() { 
  41.     return datacenterId; 
  42.   } 
  43.   public long getTimestamp() { 
  44.     return System.currentTimeMillis(); 
  45.   } 
  46.   // 這個(gè)是核心方法,通過調(diào)用nextId()方法,讓當(dāng)前這臺(tái)機(jī)器上的snowflake算法程序生成一個(gè)全局唯一的id 
  47.   public synchronized long nextId() { 
  48.     // 這兒就是獲取當(dāng)前時(shí)間戳,單位是毫秒 
  49.     long timestamp = timeGen(); 
  50.     if (timestamp < lastTimestamp) { 
  51.       System.err.printf( 
  52.         "clock is moving backwards. Rejecting requests until %d.", lastTimestamp); 
  53.       throw new RuntimeException( 
  54.         String.format("Clock moved backwards. Refusing to generate id for %d milliseconds"
  55.                lastTimestamp - timestamp)); 
  56.     } 
  57.  
  58.     // 下面是說假設(shè)在同一個(gè)毫秒內(nèi),又發(fā)送了一個(gè)請(qǐng)求生成一個(gè)id 
  59.     // 這個(gè)時(shí)候就得把seqence序號(hào)給遞增1,最多就是4096 
  60.     if (lastTimestamp == timestamp) { 
  61.  
  62.       // 這個(gè)意思是說一個(gè)毫秒內(nèi)最多只能有4096個(gè)數(shù)字,無論你傳遞多少進(jìn)來, 
  63.       //這個(gè)位運(yùn)算保證始終就是在4096這個(gè)范圍內(nèi),避免你自己傳遞個(gè)sequence超過了4096這個(gè)范圍 
  64.       sequence = (sequence + 1) & sequenceMask;  
  65.       if (sequence == 0) { 
  66.         timestamp = tilNextMillis(lastTimestamp); 
  67.       } 
  68.  
  69.     } else { 
  70.       sequence = 0; 
  71.     } 
  72.     // 這兒記錄一下最近一次生成id的時(shí)間戳,單位是毫秒 
  73.     lastTimestamp = timestamp
  74.     // 這兒就是最核心的二進(jìn)制位運(yùn)算操作,生成一個(gè)64bit的id 
  75.     // 先將當(dāng)前時(shí)間戳左移,放到41 bit那兒;將機(jī)房id左移放到5 bit那兒;將機(jī)器id左移放到5 bit那兒;將序號(hào)放***12 bit 
  76.     // ***拼接起來成一個(gè)64 bit的二進(jìn)制數(shù)字,轉(zhuǎn)換成10進(jìn)制就是個(gè)long型 
  77.     return ((timestamp - twepoch) << timestampLeftShift) | 
  78.         (datacenterId << datacenterIdShift) | 
  79.         (workerId << workerIdShift) | sequence
  80.   } 
  81.   private long tilNextMillis(long lastTimestamp) { 
  82.  
  83.     long timestamp = timeGen(); 
  84.  
  85.     while (timestamp <= lastTimestamp) { 
  86.       timestamp = timeGen(); 
  87.     } 
  88.     return timestamp
  89.   } 
  90.   private long timeGen(){ 
  91.     return System.currentTimeMillis(); 
  92.   } 
  93.   //---------------測(cè)試--------------- 
  94.   public static void main(String[] args) { 
  95.  
  96.     IdWorker worker = new IdWorker(1,1,1); 
  97.  
  98.     for (int i = 0; i < 30; i++) { 
  99.       System.out.println(worker.nextId()); 
  100.     } 
  101.   } 

SnowFlake 算法一個(gè)小小的改進(jìn)思路:其實(shí)在實(shí)際的開發(fā)中,這個(gè)SnowFlake算法可以做一點(diǎn)點(diǎn)改進(jìn)。

因?yàn)榇蠹铱梢钥紤]一下,我們?cè)谏晌ㄒ?id 的時(shí)候,一般都需要指定一個(gè)表名,比如說訂單表的唯一 id。

所以上面那 64 個(gè) bit 中,代表機(jī)房的那 5 個(gè) bit,可以使用業(yè)務(wù)表名稱來替代,比如用 00001 代表的是訂單表。

因?yàn)槠鋵?shí)很多時(shí)候,機(jī)房并沒有那么多,所以那 5 個(gè) bit 用做機(jī)房 id 可能意義不是太大。

這樣就可以做到,SnowFlake 算法系統(tǒng)的每一臺(tái)機(jī)器,對(duì)一個(gè)業(yè)務(wù)表,在某一毫秒內(nèi),可以生成一個(gè)唯一的 id,一毫秒內(nèi)生成很多 id,用*** 12 個(gè) bit 來區(qū)分序號(hào)對(duì)待。

讀寫分離來支撐按需擴(kuò)容以及性能提升

這個(gè)時(shí)候整體效果已經(jīng)挺不錯(cuò)了,大量分表的策略保證可能未來 10 年,每個(gè)表的數(shù)據(jù)量都不會(huì)太大,這可以保證單表內(nèi)的 SQL 執(zhí)行效率和性能。

然后多臺(tái)數(shù)據(jù)庫(kù)的拆分方式,可以保證每臺(tái)數(shù)據(jù)庫(kù)服務(wù)器承載一部分的讀寫請(qǐng)求,降低每臺(tái)服務(wù)器的負(fù)載。

但是此時(shí)還有一個(gè)問題,假如說每臺(tái)數(shù)據(jù)庫(kù)服務(wù)器承載每秒 2000 的請(qǐng)求,然后其中 400 請(qǐng)求是寫入,1600 請(qǐng)求是查詢。

也就是說,增刪改的 SQL 才占到了 20% 的比例,80% 的請(qǐng)求是查詢。此時(shí)假如說隨著用戶量越來越大,又變成每臺(tái)服務(wù)器承載 4000 請(qǐng)求了。

那么其中 800 請(qǐng)求是寫入,3200 請(qǐng)求是查詢,如果說你按照目前的情況來擴(kuò)容,就需要增加一臺(tái)數(shù)據(jù)庫(kù)服務(wù)器。

但是此時(shí)可能就會(huì)涉及到表的遷移,因?yàn)樾枰w移一部分表到新的數(shù)據(jù)庫(kù)服務(wù)器上去,是不是很麻煩?

其實(shí)完全沒必要,數(shù)據(jù)庫(kù)一般都支持讀寫分離,也就是做主從架構(gòu)。

寫入的時(shí)候?qū)懭胫鲾?shù)據(jù)庫(kù)服務(wù)器,查詢的時(shí)候讀取從數(shù)據(jù)庫(kù)服務(wù)器,就可以讓一個(gè)表的讀寫請(qǐng)求分開落地到不同的數(shù)據(jù)庫(kù)上去執(zhí)行。

這樣的話,假如寫入主庫(kù)的請(qǐng)求是每秒 400,查詢從庫(kù)的請(qǐng)求是每秒 1600。

那么圖大概如下所示:

寫入主庫(kù)的時(shí)候,會(huì)自動(dòng)同步數(shù)據(jù)到從庫(kù)上去,保證主庫(kù)和從庫(kù)數(shù)據(jù)一致。

然后查詢的時(shí)候都是走從庫(kù)去查詢的,這就通過數(shù)據(jù)庫(kù)的主從架構(gòu)實(shí)現(xiàn)了讀寫分離的效果了。

現(xiàn)在的好處就是,假如說現(xiàn)在主庫(kù)寫請(qǐng)求增加到 800,這個(gè)無所謂,不需要擴(kuò)容。然后從庫(kù)的讀請(qǐng)求增加到了 3200,需要擴(kuò)容了。

這時(shí),你直接給主庫(kù)再掛載一個(gè)新的從庫(kù)就可以了,兩個(gè)從庫(kù),每個(gè)從庫(kù)支撐 1600 的讀請(qǐng)求,不需要因?yàn)樽x請(qǐng)求增長(zhǎng)來擴(kuò)容主庫(kù)。

實(shí)際上線上生產(chǎn)你會(huì)發(fā)現(xiàn),讀請(qǐng)求的增長(zhǎng)速度遠(yuǎn)遠(yuǎn)高于寫請(qǐng)求,所以讀寫分離之后,大部分時(shí)候就是擴(kuò)容從庫(kù)支撐更高的讀請(qǐng)求就可以了。

而且另外一點(diǎn),對(duì)同一個(gè)表,如果你既寫入數(shù)據(jù)(涉及加鎖),還從該表查詢數(shù)據(jù),可能會(huì)牽扯到鎖沖突等問題,無論是寫性能還是讀性能,都會(huì)有影響。

所以一旦讀寫分離之后,對(duì)主庫(kù)的表就僅僅是寫入,沒任何查詢會(huì)影響他,對(duì)從庫(kù)的表就僅僅是查詢。

高并發(fā)下的數(shù)據(jù)庫(kù)架構(gòu)設(shè)計(jì)總結(jié)

從大的一個(gè)簡(jiǎn)化的角度來說,高并發(fā)的場(chǎng)景下,數(shù)據(jù)庫(kù)層面的架構(gòu)肯定是需要經(jīng)過精心的設(shè)計(jì)的。

尤其是涉及到分庫(kù)來支撐高并發(fā)的請(qǐng)求,大量分表保證每個(gè)表的數(shù)據(jù)量別太大,讀寫分離實(shí)現(xiàn)主庫(kù)和從庫(kù)按需擴(kuò)容以及性能保證。

這篇文章就是從一個(gè)大的角度來梳理了一下思路,各位同學(xué)可以結(jié)合自己公司的業(yè)務(wù)和項(xiàng)目來考慮自己的系統(tǒng)如何做分庫(kù)分表。

另外就是,具體的分庫(kù)分表落地的時(shí)候,需要借助數(shù)據(jù)庫(kù)中間件來實(shí)現(xiàn)分庫(kù)分表和讀寫分離,大家可以自己參考 Sharding-JDBC 或者 MyCAT 的官網(wǎng)即可,里面的文檔都有詳細(xì)的使用描述。

中華石杉:十余年 BAT 架構(gòu)經(jīng)驗(yàn),一線互聯(lián)網(wǎng)公司技術(shù)總監(jiān)。帶領(lǐng)上百人團(tuán)隊(duì)開發(fā)過多個(gè)億級(jí)流量高并發(fā)系統(tǒng)。現(xiàn)將多年工作中積累下的研究手稿、經(jīng)驗(yàn)總結(jié)整理成文,傾囊相授。微信公眾號(hào):石杉的架構(gòu)筆記(ID:shishan100)。

 

責(zé)任編輯:武曉燕 來源: 石杉的架構(gòu)筆記
相關(guān)推薦

2022-08-19 06:42:11

數(shù)據(jù)庫(kù)高并系統(tǒng)

2025-11-14 00:25:00

微服務(wù)架構(gòu)并發(fā)

2025-10-27 05:11:00

2019-12-31 10:33:57

Netty高性能內(nèi)存

2019-09-23 08:46:04

零拷貝 CPU內(nèi)存

2025-05-06 07:19:52

2020-02-06 08:03:53

疫情設(shè)計(jì)IM系統(tǒng)

2011-08-23 17:12:22

MySQL支撐百萬級(jí)流

2025-10-30 03:25:00

2017-12-31 08:43:19

數(shù)據(jù)中心網(wǎng)絡(luò)架構(gòu)AI

2019-02-12 09:34:00

微博短視頻架構(gòu)

2021-03-28 22:46:52

NameNodeHDFS大數(shù)據(jù)

2023-01-18 17:50:35

系統(tǒng)架構(gòu)Kafka

2023-01-11 17:29:12

數(shù)據(jù)庫(kù)分庫(kù)分表

2020-09-16 09:08:49

訂單微服務(wù)架構(gòu)

2017-11-10 09:16:07

直播彈幕系統(tǒng)

2011-04-12 10:59:46

Oracle數(shù)據(jù)庫(kù)

2017-04-24 11:01:59

MySQL數(shù)據(jù)庫(kù)架構(gòu)設(shè)計(jì)

2020-10-30 09:33:01

分庫(kù)分表數(shù)據(jù)庫(kù)

2020-01-13 10:20:30

架構(gòu)聊天架構(gòu)百萬并發(fā)量
點(diǎn)贊
收藏

51CTO技術(shù)棧公眾號(hào)

97在线资源在| 日本欧美精品在线| 国产精品久久久久久网站| 成人三级高清视频在线看| 亚洲成a人v欧美综合天堂| 九九爱精品视频| 国产一区二区三区高清播放| 日韩精彩视频| 天堂久久久久va久久久久| 91精品国产综合久久男男| 蜜桃tv一区二区三区| 亚洲**2019国产| 久久香蕉精品香蕉| 91精品国产免费久久久久久 | 国产成人综合网站| 色综合久久av| 免费高清在线视频一区·| 久久亚洲高清| 日韩精品亚洲一区| 亚洲精蜜桃久在线| 国产不卡视频在线观看| 3d动漫一区二区三区| 91在线观看免费视频| 日本精品免费在线观看| 久久久.com| 97看剧电视剧大全| 一区二区三区中文字幕| 日本1区2区3区中文字幕| 亚洲夂夂婷婷色拍ww47| 香蕉视频在线观看免费| 色狠狠色狠狠综合| 免费在线观看黄| 精品国产污污免费网站入口 | 亚洲一区二区三区在线看| videoxxxx另类日本极品 | 亚洲视频在线a| 国产精品情趣视频| 黄色高清在线观看| 欧美日韩久久久| 日韩黄色影院| 日韩成人中文电影| 欧美午夜网站| 国产成人涩涩涩视频在线观看| 99精品视频在线| 狠狠色噜噜狠狠狠狠色吗综合| 老鸭窝毛片一区二区三区| 最新欧美日韩亚洲| 国产精品嫩草久久久久| 性网站在线看| 亚洲国产日韩欧美在线图片 | 精品99在线视频| 亚洲综合成人网| 成人日日夜夜| 日韩中文字幕久久| 国内精品久久久久久久影视简单| 国产精品污www一区二区三区| 久久国产欧美日韩精品| 青青草av网站| 欧美天堂亚洲电影院在线播放| 亚洲电影观看| 日韩av成人在线| 视频一区二区三区中文字幕| 日本黄大片在线观看| 一区二区三区资源| 超碰在线资源| 国产精品成熟老女人| 久久中文欧美| 午夜激情在线观看视频| 欧美性大战久久久久久久蜜臀| 二区三区不卡| 成人激情av在线| 国产成都精品91一区二区三 | 国产精品国产自产拍在线| 国产一区二区影视| 久久精品久久精品亚洲人| 亚洲成av人片一区二区密柚| 免费观看黄色大片| 亚洲国产日韩一区二区| 成人影院大全| 99久久一区三区四区免费| 91麻豆高清视频| 18+激情视频在线| 日av在线播放中文不卡| 国产在线视频精品一区| 在线免费观看黄色片| 在线电影中文日韩| 99国内精品| 全网国产福利在线播放| 夜夜嗨av色综合久久久综合网| 欧美日本不卡| 亚洲jizzjizz妇女| 伊人久久精品视频| 亚洲中字黄色| 97在线资源| 精品中文字幕乱| 卡一卡二国产精品| 成a人片在线观看www视频| 韩国美女主播一区| 国产福利一区在线观看| 国产一级二级三级在线观看| 欧美在线观看视频| 久久久影院官网| 美女福利一区二区三区| 麻豆成人小视频| 欧美色道久久88综合亚洲精品| 色悠久久久久综合先锋影音下载| 无码免费一区二区三区免费播放 | 精品三级av在线导航| 在线看视频不卡| 欧美日韩国产综合草草| 国产精品一线天粉嫩av| 免费裸体美女网站| 伊人久久久久久久久久久| 日本中文一区二区三区| 97超碰人人在线| 91手机视频在线观看| 亚洲一二三级电影| 午夜精品福利影院| 91日韩视频在线观看| 欧美老女人性视频| 久久久久综合网| 91精品国产自产观看在线| www.日本在线视频| 中文字幕av一区| 99久久夜色精品国产网站| 欧美123区| 内射国产内射夫妻免费频道| 尤物九九久久国产精品的分类 | 亚洲女同女同女同女同女同69| 50度灰在线观看| 99久久人爽人人添人人澡| 成人福利在线观看| 欧美日本在线播放| 一区二区在线观看av| 久久成人羞羞网站| 五月综合久久| 香蕉视频国产在线观看| 国产精品专区在线| 国产精品专区一| 亚洲美女黄色片| 欧美日韩亚洲网| 国产精品美女久久久久久久久| 99riav国产精品| 日韩欧美精品| 日本少妇一区| 依依综合在线| 日本在线看片免费人成视1000| 国产毛片毛片| 亚洲色图 在线视频| 日韩欧美亚洲在线| 国产精选久久久久久| 国模吧一区二区三区| 亚洲欧美成人网| 欧美精品久久一区二区三区| 一区二区三区四区精品在线视频 | 国产欧美一区二区三区米奇| av中文资源在线资源免费观看| 日本高清视频在线观看| 四虎久久免费| 青青草视频在线观看| 男人日女人的bb| 亚洲一区亚洲二区亚洲三区| 欧美激情国产精品| 欧美精品一区二| 欧美日韩成人综合天天影院| 亚洲一区二区三区美女| 91丨九色丨蝌蚪富婆spa| 快she精品国产999| 久久人人97超碰国产公开结果| 亚洲第一福利社区| 粉嫩久久久久久久极品| 欧美极品在线| 国产69精品久久久久按摩| www视频在线免费观看| 免费黄色在线视频网站| 嫩模私拍啪啪| 日本fc2在线观看| 日韩欧美亚洲系列| 黄色大片在线免费观看| 日韩精品系列| 另类图片亚洲色图| 亚洲午夜精品久久| 国产91久久婷婷一区二区| 中文字幕欧美视频在线| 亚洲精品成人久久电影| 亚洲高清在线观看| 亚洲网址你懂得| 久久视频在线直播| 亚洲qvod图片区电影| 日产精品99久久久久久| 97在线视频一区| 国产精品亚洲综合天堂夜夜| 日本福利小视频| 小处雏高清一区二区三区| 青青草原在线亚洲| 国产精品久久久久9999吃药| 欧美日本高清一区| 国产成人午夜精品| 欧美丰满老妇| 日韩欧美国产高清|