国产精品电影_久久视频免费_欧美日韩国产激情_成年人视频免费在线播放_日本久久亚洲电影_久久都是精品_66av99_九色精品美女在线_蜜臀a∨国产成人精品_冲田杏梨av在线_欧美精品在线一区二区三区_麻豆mv在线看

推理增強生成ReAG,讓RAG效果更上一層樓

發(fā)布于 2025-2-25 13:03
瀏覽
0收藏

在檢索增強生成(RAG)技術(shù)嶄露頭角之際,業(yè)界對其賦予厚望,期待它能夠推動AI邁向新的智能高度。

然而,實踐中RAG暴露出諸多缺陷,極大地限制了其應(yīng)用效果與AI的發(fā)展進程。在此背景下,推理增強生成(ReAG)技術(shù)應(yīng)運而生。ReAG憑借其獨特的技術(shù)架構(gòu)與運行邏輯,為解決 RAG 問題提供新思路和可行方案,在AI升級之路上潛力巨大。

1.傳統(tǒng)RAG的 “槽點”

傳統(tǒng) RAG 系統(tǒng)就好比記憶力差的圖書管理員,看似在努力找資料,實則狀況百出:

  • 語義搜索“缺根弦”:找文檔只看表面,像搜“空氣污染”,就只知道“汽車尾氣排放”,像《城市肺部疾病趨勢》這種相關(guān)研究就被無視了。
  • 基礎(chǔ)架構(gòu)“找麻煩”:分塊、嵌入、向量數(shù)據(jù)庫把流程復(fù)雜化,還容易出問題,索引過時、分割錯誤經(jīng)常有。
  • 知識更新“慢吞吞”:醫(yī)學(xué)、金融數(shù)據(jù)變得快,RAG更新索引卻很慢,新知識進不來,根本沒法用。

你問“北極熊為啥變少”,RAG只說“海冰融化”,關(guān)鍵的覓食問題卻不提,這就是RAG的缺陷。

2.ReAG來襲,告別傳統(tǒng)檢索模式

RAG的問題不少,ReAG則帶來全新思路。它跳過RAG的預(yù)處理流程,直接把原始材料(文本文件、電子表格、網(wǎng)址等)喂給語言模型。

大語言模型具體這么做:

  • 完整讀取文檔:無需分塊、嵌入,文檔上下文完整保留。
  • 精準(zhǔn)篩選內(nèi)容:先判斷文檔是否有用(相關(guān)性檢查),再確定哪些部分重要(內(nèi)容提取)。
  • 智能合成答案:像專業(yè)人員一樣整合信息,即便關(guān)鍵詞不匹配,也能找出聯(lián)系。

比如問“北極熊為啥減少”,ReAG分析《海冰的熱動力學(xué)》報告時,就算沒“北極熊”字樣,也能找到海冰減少影響其覓食的關(guān)鍵內(nèi)容,給出答案。

3.ReAG工作原理

ReAG 是如何 “工作” 的?給大家拆解一下它的技術(shù)流程,一看就懂:

  • 直接攝取原始文檔:不管是Markdown、PDF,還是網(wǎng)址,ReAG都不做預(yù)處理,直接使用。
  • 并行分析文檔:大語言模型同時對每份文檔進行相關(guān)性檢查和內(nèi)容提取,效率超高。
  • 動態(tài)合成答案:剔除不相關(guān)文檔,用篩選后的內(nèi)容生成答案。

ReAG 的技術(shù)流程簡潔高效,具有較高的技術(shù)價值。

4.ReAG更勝一籌:優(yōu)勢與權(quán)衡

4.1 ReAG優(yōu)勢

  • 動態(tài)數(shù)據(jù)處理快:實時新聞、市場數(shù)據(jù)這類不斷變化的數(shù)據(jù),ReAG能即時處理,無需重新嵌入,效率超高。
  • 復(fù)雜查詢有一手:像探究監(jiān)管政策對社區(qū)銀行的影響這類難題,ReAG挖掘間接聯(lián)系的能力比RAG強,解題更在行。
  • 多模態(tài)分析超方便:圖表、表格、文本,ReAG能一起分析,還不用額外預(yù)處理。

4.2 ReAG短板

  • 成本較高:處理100份文檔,ReAG需調(diào)用100次大語言模型,RAG向量搜索成本則低很多。
  • 大規(guī)模處理慢:面對海量文檔,ReAG速度欠佳,RAG和ReAG混合使用效果更佳。

ReAG優(yōu)勢突出但也有局限,使用時按需選擇!

5.ReAG技術(shù)棧揭秘

ReAG表現(xiàn)亮眼,其技術(shù)棧暗藏玄機,下面詳細(xì)羅列:

5.1 技術(shù)組件解析

  1. GROQ + Llama-3.3–70B-Versatile
  • 職責(zé):負(fù)責(zé)相關(guān)性評估,初步篩選文檔。
  • 優(yōu)勢:推理快,每秒處理500多令牌;700億參數(shù)精準(zhǔn)評分;12.8萬令牌大窗口。
  • 示例:能識別無關(guān)鍵詞重疊的《海冰的熱動力學(xué)》與“北極熊減少”相關(guān)。
  1. Ollama + DeepSeek-R1:14B
  • 任務(wù):進行響應(yīng)合成,推理出答案。
  • 長處:輕量省錢,針對提取總結(jié)優(yōu)化;可本地運行保隱私、降成本;12.8萬令牌窗口。
  • 應(yīng)用:從文檔提取關(guān)鍵信息,如無冰期覓食窗口變化數(shù)據(jù)。
  1. LangChain
  • 功能:編排流程、實現(xiàn)自動化。
  • 特點:并行GROQ和Ollama任務(wù);管理文檔、處理錯誤、聚合輸出。

5.2 技術(shù)棧優(yōu)勢

  • 成本合理:GROQ處理重任務(wù),Ollama本地處理輕量任務(wù),節(jié)省成本。
  • 擴展性好:GROQ的LPU能處理大量并發(fā)評估。
  • 靈活多變:可更換模型,無需重寫管道。
  • 經(jīng)驗之談:處理超50頁文檔,用大上下文窗口的大語言模型配合ReAG更好。

6.ReAG代碼實現(xiàn)

安裝所需依賴項

!pip install langchain langchain_groq langchain_ollama langchain_community pymupdf pypdf

下載數(shù)據(jù)

!mkdir ./data
!mkdir ./chunk_caches
!wget "https://www.binasss.sa.cr/int23/8.pdf" -O "./data/fibromyalgia.pdf"

設(shè)置大語言模型

from langchain_groq import ChatGroq
from langchain_ollama import ChatOllama
import os
os.environ["GROQ_API_KEY"] = "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"

llm_relevancy = ChatGroq(
    model="llama-3.3-70b-versatile",
    temperature=0,
)

llm = ChatOllama(
    model="deepseek-r1:14b",
    temperature=0.6,
    max_tokens=3000,
)

定義系統(tǒng)提示

REAG_SYSTEM_PROMPT = """
# 角色和目標(biāo)
你是一個智能知識檢索助手。你的任務(wù)是分析提供的文檔或網(wǎng)址,為用戶查詢提取最相關(guān)的信息。

# 指令
1. 仔細(xì)分析用戶的查詢,確定關(guān)鍵概念和要求。
2. 在提供的來源中搜索相關(guān)信息,并在“content”字段中輸出相關(guān)部分。
3. 如果你在文檔中找不到必要的信息,返回“isIrrelevant: true”,否則返回“isIrrelevant: false”。

# 約束
- 不要超出可用數(shù)據(jù)進行假設(shè)
- 明確指出是否未找到相關(guān)信息
- 在選擇來源時保持客觀
"""

定義RAG提示詞

rag_prompt = """你是一個問答任務(wù)助手。使用以下檢索到的上下文片段來回答問題。如果你不知道答案,就說不知道。最多用三句話,保持回答簡潔。
問題:{question} 
上下文:{context} 
答案:
"""

定義響應(yīng)模式

from pydantic import BaseModel, Field
from typing import List
from langchain_core.output_parsers import JsonOutputParser

class ResponseSchema(BaseModel):
    content: str = Field(..., description="文檔中與回答所提問題相關(guān)或足以回答問題的頁面內(nèi)容")
    reasoning: str = Field(..., description="針對所提問題選擇該頁面內(nèi)容的原因")
    is_irrelevant: bool = Field(..., description="如果文檔中的內(nèi)容不足以或與回答所提問題無關(guān),指定為“True”;如果上下文或頁面內(nèi)容與回答問題相關(guān),則指定為“False”")

class RelevancySchemaMessage(BaseModel):
    source: ResponseSchema

relevancy_parser = JsonOutputParser(pydantic_object=RelevancySchemaMessage)

加載并處理輸入文檔

from langchain_community.document_loaders import PyMuPDFLoader

file_path = "./data/fibromyalgia.pdf"
loader = PyMuPDFLoader(file_path)
docs = loader.load()
print(len(docs))
print(docs[0].metadata)

響應(yīng)

8
{'producer': 'Acrobat Distiller 6.0 for Windows',
'creator': 'Elsevier',
'creationdate': '2023-01-20T09:25:19-06:00',
'source': './data/fibromyalgia.pdf',
'file_path': './data/fibromyalgia.pdf',
'total_pages': 8,
'format': 'PDF 1.7',
'title': 'Fibromyalgia: Diagnosis and Management',
'author': 'Bradford T. Winslow MD',
'subject': 'American Family Physician, 107 (2023) 137-144',
'keywords': '',
'moddate': '2023-02-27T15:02:12+05:30',
'trapped': '',
'modDate': "D:20230227150212+05'30'",
'creationDate': "D:20230120092519-06'00'",
'page': 0}

格式化文檔的輔助函數(shù)

from langchain.schema import Document

def format_doc(doc: Document) -> str:
    return f"Document_Title: {doc.metadata['title']}\nPage: {doc.metadata['page']}\nContent: {doc.page_content}"

提取相關(guān)上下文的輔助函數(shù)

from langchain_core.prompts import PromptTemplate

def extract_relevant_context(question, documents):
    result = []
    for doc in documents:
        formatted_documents = format_doc(doc)
        system = f"{REAG_SYSTEM_PROMPT}\n\n# Available source\n\n{formatted_documents}"
        prompt = f"""Determine if the 'Avaiable source' content supplied is sufficient and relevant to ANSWER the QUESTION asked.
        QUESTION: {question}
        #INSTRUCTIONS TO FOLLOW
        1. Analyze the context provided thoroughly to check its relevancy to help formulizing a response for the QUESTION asked.
        2, STRICTLY PROVIDE THE RESPONSE IN A JSON STRUCTURE AS DESCRIBED BELOW:
            ```json
               {{"content":<<The page content of the document that is relevant or sufficient to answer the question asked>>,
                 "reasoning":<<The reasoning for selecting The page content with respect to the question asked>>,
                 "is_irrelevant":<<Specify 'True' if the content in the document is not sufficient or relevant.Specify 'False' if the page content is sufficient to answer the QUESTION>>
                 }}
            ```
         """
        messages =[ {"role": "system", "content": system},
                       {"role": "user", "content": prompt},
                    ]
        response = llm_relevancy.invoke(messages)    
        print(response.content)
        formatted_response = relevancy_parser.parse(response.content)
        result.append(formatted_response)
    final_context = []
    for items in result:
        if (items['is_irrelevant'] == False) or ( items['is_irrelevant'] == 'false') or (items['is_irrelevant'] == 'False'):
            final_context.append(items['content'])
    return final_context

調(diào)用函數(shù)檢索相關(guān)上下文

question = "What is Fibromyalgia?"
final_context = extract_relevant_context(question, docs)
print(len(final_context))

生成響應(yīng)的輔助函數(shù)

def generate_response(question, final_context):
    prompt = PromptTemplate(template=rag_prompt,
                                     input_variables=["question","context"],)
    chain  = prompt | llm
    response = chain.invoke({"question":question,"context":final_context})
    print(response.content.split("\n\n")[-1])
    return response.content.split("\n\n")[-1]

生成響應(yīng)

final_response = generate_response(question, final_context)
final_response

完整響應(yīng)

'Fibromyalgia is a chronic condition characterized by widespread musculoskeletal pain, fatigue, disrupted sleep, and cognitive difficulties like "fibrofog." It is often associated with heightened sensitivity to pain due to altered nervous system processing. Diagnosis considers symptoms such as long-term pain, fatigue, and sleep issues without underlying inflammation or injury.'

問題2

question =  "What are the causes of Fibromyalgia?"
final_context = extract_relevant_context(question, docs)
final_response = generate_response(question, final_context)

完整響應(yīng)

Fibromyalgia likely results from disordered central pain processing leading to heightened sensitivity (hyperalgesia and allodynia). Possible causes include dysfunction of the hypothalamic-pituitary-adrenal axis, inflammation, glial activation, small fiber neuropathy, infections like Epstein-Barr virus or Lyme disease, and a genetic component. Other conditions, such as infections or medication side effects, may also contribute to similar symptoms.

問題3

question =  "Do people suffering from rheumatologic conditions may have fibromyalgia?"
final_context = extract_relevant_context(question, docs)
final_response = generate_response(question, final_context)

完整響應(yīng)

Yes, people with rheumatologic conditions, such as rheumatoid arthritis or psoriatic arthritis, may also have fibromyalgia. This is because they share overlapping symptoms, making diagnosis challenging.

問題4

question =  "Mention the nonpharmacologic treatment for fibromyalgia?"
final_context = extract_relevant_context(question, docs)
final_response = generate_response(question, final_context)

完整響應(yīng)

Nonpharmacologic treatments for fibromyalgia include patient education, exercise, and cognitive behavior therapy (CBT).

問題5

question =  "According to 2016 American College of Rheumatology Fibromyalgia what is the Diagnostic Criteria for Fibromyalgia?"
final_context = extract_relevant_context(question, docs)
final_response = generate_response(question, final_context)

完整響應(yīng)

The 2016 American College of Rheumatology diagnostic criteria for fibromyalgia require generalized pain in at least four of five body regions for at least three months. Additionally, patients must meet either a Widespread Pain Index (WPI) score of ≥7 with a Symptom Severity Scale (SSS) score of ≥5 or a WPI score of ≥4 with an SSS score of ≥9. Other disorders that could explain the symptoms must be ruled out.

問題6

question =  "What is the starting dosage of Amitriptyline?"
final_context = extract_relevant_context(question, docs)
final_response = generate_response(question, final_context)

完整響應(yīng)

The starting dosage of Amitriptyline for adults is usually between 25 to 50 mg per day, often beginning with a lower dose of 5 to 10 mg at night to minimize side effects before gradually increasing.

問題7

question = "What has been mentioned about AAPT 2019 Diagnostic Criteria for Fibromyalgia"
final_context = extract_relevant_context(question, docs)
final_response = generate_response(question, final_context)

完整響應(yīng)

The AAPT 2019 criteria for fibromyalgia include multisite pain in at least six of nine specified areas, moderate to severe sleep problems or fatigue, and symptoms lasting three months or more.

問題8

question =  "What are the medications and doses for Fibromyalgia?"
final_context = extract_relevant_context(question, docs)
print(final_context)
final_response = generate_response(question, final_context)

輸出結(jié)果

['Duloxetine, milnacipran, pregabalin, and amitriptyline are potentially effective medications for fibromyalgia. Nonsteroidal anti-inflammatory drugs and opioids have not demonstrated benefits for fibromyalgia and have significant limitations.',
 'Amitriptyline, cyclobenzaprine, duloxetine (Cymbalta), milnacipran (Savella), and pregabalin (Lyrica) are effective for pain in fibromyalgia.43,46-48,50,52,54',
 'Amitriptyline (tricyclic antidepressant) - 5 to 10 mg at night, 20 to 30 mg at night. Cyclobenzaprine (muscle relaxant; tricyclic derivative) - 5 to 10 mg at night, 10 to 40 mg daily in 1 to 3 divided doses. Duloxetine (Cymbalta; serotonin-norepinephrine reuptake inhibitor) - 20 to 30 mg every morning, 60 mg every morning. Milnacipran (Savella; serotonin-norepinephrine reuptake inhibitor) - 12.5 mg every morning, 50 mg twice daily. Pregabalin (Lyrica; gabapentinoid) - 25 to 50 mg at bedtime, 150 to 450 mg at bedtime.',
 'Fibromyalgia is often treated with medications such as pregabalin (Lyrica) and duloxetine (Cymbalta). Pregabalin can be started at a dose of 75 mg twice daily, with a maximum dose of 450 mg/day. Duloxetine can be initiated at a dose of 30 mg once daily, with a target dose of 60 mg/day.',
 'Fibromyalgia is often treated with medications such as pregabalin (Lyrica) and duloxetine (Cymbalta). Pregabalin can be started at a dose of 75 mg twice daily, with a maximum dose of 450 mg/day. Duloxetine can be initiated at a dose of 30 mg once daily, with a target dose of 60 mg/day.']

最終響應(yīng)

The medications commonly used to treat fibromyalgia include:

1. **Amitriptyline**: A tricyclic antidepressant typically taken at night in doses ranging from 5 to 30 mg.

2. **Cyclobenzaprine**: A muscle relaxant and tricyclic derivative, usually administered in doses up to 40 mg daily in divided doses.

3. **Duloxetine (Cymbalta)**: A serotonin-norepinephrine reuptake inhibitor taken in the morning, starting at 20-30 mg and increasing to 60 mg if needed.

4. **Milnacipran (Savella)**: Another serotonin-norepinephrine reuptake inhibitor, starting at 12.5 mg in the morning and potentially increased to 50 mg twice daily.

5. **Pregabalin (Lyrica)**: A gabapentinoid taken at bedtime, beginning with 75 mg twice daily and up to a maximum of 450 mg/day.

These medications are effective for managing pain associated with fibromyalgia. It's important to note that dosages should be adjusted under medical supervision, starting low and increasing as necessary. Additionally, NSAIDs and opioids are not recommended for treating fibromyalgia due to limited effectiveness and potential side effects.

7.實際應(yīng)用

  • 醫(yī)學(xué)研究:從原始臨床試驗數(shù)據(jù)和期刊中綜合見解。
  • 金融市場:分析實時收益報告和美國證券交易委員會(SEC)文件,制定實時投資策略。
  • 法律分析:剖析復(fù)雜的判例法,識別先例之間的聯(lián)系。

8.ReAG的未來發(fā)展

  • 混合系統(tǒng):先使用檢索增強生成(RAG)進行初步篩選,然后利用推理增強生成(ReAG)進行深度分析。
  • 低成本模型:開源大語言模型(如 DeepSeek)和量化技術(shù)將降低成本。
  • 更大的上下文窗口:未來的模型將能夠處理包含十億個標(biāo)記的文檔,這會使推理增強生成(ReAG)更加強大。

9.結(jié)語

在 AI 技術(shù)不斷迭代的當(dāng)下,ReAG 為我們展現(xiàn)了一種全新思路。ReAG 無意取代 RAG,而是從根本上重塑 AI 與知識的交互邏輯。

ReAG 將檢索巧妙轉(zhuǎn)化為推理任務(wù),精準(zhǔn)復(fù)刻人類研究的全面性、細(xì)致性和上下文關(guān)聯(lián)性。在醫(yī)學(xué)研究中,它能高效梳理臨床數(shù)據(jù);于金融領(lǐng)域,又可敏銳洞察市場動態(tài)。這種獨特的優(yōu)勢,使其在多領(lǐng)域已嶄露頭角。

隨著技術(shù)發(fā)展,ReAG 有望解鎖更多應(yīng)用場景,深度賦能各行業(yè)。讓我們一同期待,它在未來 AI 發(fā)展浪潮中創(chuàng)造更多可能,重塑更多領(lǐng)域的發(fā)展格局。

本文轉(zhuǎn)載自 ??AI科技論談??,作者: AI科技論談

標(biāo)簽
收藏
回復(fù)
舉報
回復(fù)
相關(guān)推薦
91精品久久久久久综合五月天| www.日韩大片| 91精品国产91久久久久久| 竹内纱里奈兽皇系列在线观看 | 欧美丰满美乳xxx高潮www| www亚洲人| 亚洲成人教育av| 高h视频在线播放| 日韩在线视频导航| 91精品入口| 成人精品在线视频| 久久国产日韩| 欧美 日韩 亚洲 一区| 国产午夜精品久久久久久久| 成人女性文胸| 精品美女国产在线| 在线三级中文| 久久夜色撩人精品| 999国产精品999久久久久久| 欧美精品一区在线| 不卡在线观看av| 黄页免费在线| 亚洲白拍色综合图区| 91成人精品观看| 亚洲一区二区三区久久| 青青草国产精品97视觉盛宴| 福利视频一二区| 一区二区三区免费在线观看| 岛国视频免费在线观看| 亚洲另类欧美自拍| 亚洲精品小区久久久久久| 久久精品ww人人做人人爽| 99国产精品国产精品久久| 翔田千里一区| 上原亚衣av一区二区三区| 欧美mv日韩| 天堂8在线天堂资源bt| 亚洲国产精品久久人人爱| 国产传媒在线| 国产xxx69麻豆国语对白| 亚洲综合好骚| 欧美第一页浮力影院| 欧美高清视频在线高清观看mv色露露十八 | 日本精品专区| 精品女同一区二区| 老司机精品在线| 欧美日韩精品综合| 中文字幕精品一区二区三区精品| av电影在线观看网址| 久久久av电影| 91久久综合| 色综合小说天天综合网| 亚洲国产精品久久久久秋霞蜜臀 | 欧美激情精品久久久久久免费印度 | 日本h片久久| 成人久久一区二区| 99精品黄色片免费大全| 福利在线观看| 97人人模人人爽人人喊中文字 | 成人做爰视频www| 成人18视频| 国产精品高潮呻吟| 都市激情亚洲综合| 91理论片午午论夜理片久久| 91一区二区在线观看| 色爱综合区网| 成人国产精品一区二区| 中文字幕的久久| 91伊人久久| 一本一本a久久| 欧美三级午夜理伦三级中视频| 欧美尿孔扩张虐视频| 北条麻妃在线视频观看| 日韩av影院在线观看| 在线欧美一区| 在线看的av| 国产99久久精品一区二区永久免费| av中文字幕一区| 麻豆福利在线观看| 99国精产品一二二线| 亚洲欧洲日产国产综合网| 小黄鸭精品aⅴ导航网站入口| 蜜桃成人免费视频| 色婷婷综合中文久久一本| 精品一区亚洲| xxx国产在线观看| 九色精品美女在线| 成人高清视频在线观看| 天堂在线中文网官网| 色阁综合av| 日韩一区二区三区三四区视频在线观看| 999国产精品999久久久久久| 美女av网站| 欧美一级片免费在线| 国产女人aaa级久久久级| 美女色狠狠久久| 18视频在线观看娇喘| 亚洲国产精品久久| 久久av中文字幕片| 超碰97免费在线| 亚洲精品一区二区三区四区五区| 日韩午夜精品视频| 欧美a级理论片| www成人免费观看| 亚洲毛片aa| 日韩电影中文字幕av| 国产一区欧美日韩| 亚洲精品一区三区三区在线观看| 99色这里只有精品| 欧美成人免费播放| 国产精品久久久久久久久免费樱桃 | 国产精品偷伦一区二区| 亚洲一区二区三区四区的| 国产精品亚洲二区| 国产网友自拍电影在线| 成人国产精品日本在线| 在线精品视频免费播放| 国产日韩亚洲| 欧美裸体视频| 每日在线更新av| 欧美一区二区三区图| 精品女同一区二区三区在线播放 | 国产欧美日韩专区发布| 亚洲小说欧美激情另类| 欧美阿v一级看视频| 激情视频在线观看| 青春草在线视频免费观看| 尤物九九久久国产精品的特点| 91视频.com| 日本a口亚洲| 色www永久免费视频首页在线 | 丰满白嫩尤物一区二区| 国产免费区一区二区三视频免费| 在线观看免费播放网址成人| 国产精品久久久久久久久久免费| 色猫猫国产区一区二在线视频| 日韩黄色免费电影| 91精品一久久香蕉国产线看观看| av黄色免费| 久久波多野结衣| 色999日韩欧美国产| 一区二区欧美精品| 日韩成人一级片| 97久久综合区小说区图片区| 日本h片在线看| 视频在线99| 粗暴蹂躏中文一区二区三区| 亚洲一区二区欧美日韩| 一本久久知道综合久久| 欧美网站免费| 天堂中文在线8| www.激情网| 国产精品免费久久久久影院| 欧美一激情一区二区三区| 99国产精品一区| 自拍日韩欧美| 78精品国产综合久久香蕉| 探花国产精品| 亚洲狠狠婷婷综合久久久| 国内精品中文字幕| 91麻豆精品国产91久久久更新时间| 97精品视频在线观看自产线路二| 国产精品久久占久久| 台湾佬中文娱乐久久久| 在线免费激情视频| 精品国偷自产一区二区三区| 国产日韩欧美成人| 在线精品国产欧美| 欧美日韩国产精品专区| 国产精品一区二区果冻传媒| 日本a口亚洲| 欧美成人xxxx| 日韩专区在线| 黄网站免费入口| 色女人综合av| 国产精品网站视频| 曰本色欧美视频在线| 欧美午夜性色大片在线观看| 91丨porny丨户外露出| 99热精品在线观看| 天堂一区二区三区四区| 天堂√中文最新版在线| 日韩大胆视频| 欧美三级理论片| 正在播放国产精品| 7777精品伊久久久大香线蕉语言| 成年无码av片在线| 精品国产欧美一区二区| 精品电影在线观看| 久久久久久亚洲综合| 三级成人在线视频| 日韩在线二区| 99a精品视频在线观看| 欧美成人黑人| 成人福利片网站| 在线观看免费网站| 午夜免费一区二区| 久久人人爽人人爽人人av| 欧洲亚洲一区二区三区四区五区| 亚洲直播在线一区|