国产精品电影_久久视频免费_欧美日韩国产激情_成年人视频免费在线播放_日本久久亚洲电影_久久都是精品_66av99_九色精品美女在线_蜜臀a∨国产成人精品_冲田杏梨av在线_欧美精品在线一区二区三区_麻豆mv在线看

NL2Plan: 基于最小文本描述的魯棒性大模型驅(qū)動(dòng)任務(wù)規(guī)劃 精華

發(fā)布于 2024-5-9 10:43
瀏覽
0收藏

在AI規(guī)劃領(lǐng)域,傳統(tǒng)的規(guī)劃器(如Fast Downward)雖然功能強(qiáng)大,但它們需要將輸入任務(wù)建模為PDDL(Problem Domain Definition Language)格式,這是一個(gè)繁瑣且容易出錯(cuò)的過(guò)程。相比之下,使用大型語(yǔ)言模型(LLMs)進(jìn)行規(guī)劃可以接受幾乎任何文本輸入,但不保證計(jì)劃的質(zhì)量和完整性。為了結(jié)合這兩種方法的優(yōu)點(diǎn),一些研究工作開(kāi)始利用LLMs自動(dòng)化PDDL創(chuàng)建過(guò)程的部分內(nèi)容。然而,這些方法仍然需要不同程度的專家輸入。

為此提出了NL2Plan,這是一個(gè)首個(gè)與領(lǐng)域無(wú)關(guān)的離線LLM驅(qū)動(dòng)規(guī)劃系統(tǒng)。NL2Plan使用LLM逐步從簡(jiǎn)短的文本提示中提取必要信息,然后創(chuàng)建一個(gè)完整的PDDL描述,包括領(lǐng)域和問(wèn)題描述,最終由傳統(tǒng)規(guī)劃器求解。

NL2Plan及其六個(gè)步驟的流程圖。在“類型提取”步驟中,生成一組對(duì)象類型,然后由“類型層級(jí)”步驟將其結(jié)構(gòu)化為樹(shù)形結(jié)構(gòu)。接下來(lái),“動(dòng)作提取”步驟創(chuàng)建一個(gè)自然語(yǔ)言動(dòng)作描述的列表,而“動(dòng)作構(gòu)建”步驟則在PDDL(規(guī)劃領(lǐng)域定義語(yǔ)言)中將其形式化。“任務(wù)提取”是最后一個(gè)由大型語(yǔ)言模型(LLM)驅(qū)動(dòng)的步驟,它創(chuàng)建初始狀態(tài)和目標(biāo)描述。最后,“規(guī)劃”步驟使用自動(dòng)規(guī)劃器生成計(jì)劃或顯示所建模的任務(wù)無(wú)法解決。在每個(gè)由LLM驅(qū)動(dòng)的步驟中,人類或LLM實(shí)例都可以選擇性地對(duì)解決方案提供進(jìn)一步的反饋。用戶只需要與NL2Plan交互以提供自然語(yǔ)言任務(wù)。

NL2Plan: 基于最小文本描述的魯棒性大模型驅(qū)動(dòng)任務(wù)規(guī)劃-AI.x社區(qū)


NL2Plan的六個(gè)步驟:

  1. 類型提取 (Type Extraction):
  • 利用LLM定義任務(wù)中應(yīng)包含的對(duì)象類型。
  • 例如,對(duì)于物流規(guī)劃問(wèn)題,可能需要定義城市、位置、機(jī)場(chǎng)、飛機(jī)、卡車和包裹等類型。
  1. 層次結(jié)構(gòu)構(gòu)建 (Hierarchy Construction):
  • 組織在類型提取步驟中定義的類型,形成層級(jí)結(jié)構(gòu)。
  • 確定哪些類型是其他類型的子類型,例如,飛機(jī)和卡車可以是車輛的子類型。
  1. 動(dòng)作提取 (Action Extraction):
  • 描述基于已定義類型和世界知識(shí),任務(wù)中應(yīng)該可用的動(dòng)作。
  • 動(dòng)作以名稱、描述和使用示例的形式呈現(xiàn),LLM還可以推理出應(yīng)包含哪些其他動(dòng)作。
  1. 動(dòng)作構(gòu)建 (Action Construction):
  • LLM一次定義一個(gè)動(dòng)作,生成其參數(shù)、前提條件和效果。
  • 動(dòng)態(tài)創(chuàng)建新謂詞以供當(dāng)前和后續(xù)動(dòng)作使用,并通過(guò)自動(dòng)驗(yàn)證工具進(jìn)行驗(yàn)證。
  1. 任務(wù)提取 (Task Extraction):
  • 生成PDDL問(wèn)題規(guī)范,包括對(duì)象、初始狀態(tài)和目標(biāo)條件。
  • 接受自然、非結(jié)構(gòu)化的初始狀態(tài)和目標(biāo)條件描述,與以前的方法相比,NL2Plan不需要程序化和結(jié)構(gòu)化地生成這些狀態(tài)。
  1. 規(guī)劃 (Planning):
  • 使用經(jīng)典規(guī)劃器解決生成的PDDL任務(wù)。
  • 如果規(guī)劃器未能找到計(jì)劃,NL2Plan會(huì)得出結(jié)論,即建模的PDDL任務(wù)無(wú)法解決,并返回“未找到計(jì)劃”。?

NL2Plan步驟的說(shuō)明性輸入輸出對(duì)

NL2Plan: 基于最小文本描述的魯棒性大模型驅(qū)動(dòng)任務(wù)規(guī)劃-AI.x社區(qū)


自動(dòng)LLM驅(qū)動(dòng)的類型提取反饋?zhàn)硬襟E的說(shuō)明性示例。檢查清單在NL2Plan的不同步驟中會(huì)有所不同

NL2Plan: 基于最小文本描述的魯棒性大模型驅(qū)動(dòng)任務(wù)規(guī)劃-AI.x社區(qū)


NL2Plan在四個(gè)規(guī)劃領(lǐng)域上進(jìn)行了評(píng)估,成功解決了10個(gè)任務(wù)中的15個(gè),明顯優(yōu)于直接應(yīng)用LLM的鏈?zhǔn)剿伎纪评矸椒ǎ笳邇H解決了2個(gè)任務(wù)。此外,NL2Plan在兩個(gè)失敗案例中沒(méi)有返回?zé)o效計(jì)劃,而是報(bào)告未能解決任務(wù)。

生成計(jì)劃的總結(jié)。勾號(hào)表示成功的計(jì)劃,叉號(hào)表示失敗的計(jì)劃,而“~”表示有疑問(wèn)的計(jì)劃。在后兩種情況下,描述了缺陷。

NL2Plan: 基于最小文本描述的魯棒性大模型驅(qū)動(dòng)任務(wù)規(guī)劃-AI.x社區(qū)

NL2Plan: 基于最小文本描述的魯棒性大模型驅(qū)動(dòng)任務(wù)規(guī)劃-AI.x社區(qū)

使用PDDL表示還允許用戶理解NL2Plan如何解釋任務(wù)以及它為什么以某種方式進(jìn)行規(guī)劃,這使得生成的計(jì)劃是可解釋的,并減少了應(yīng)用LLMs的黑箱特性。NL2Plan從簡(jiǎn)單輸入生成PDDL的能力,也使其成為協(xié)助人類為新領(lǐng)域創(chuàng)建領(lǐng)域描述的工具。

附錄:

Blocksworld領(lǐng)域的任務(wù)和計(jì)劃示例。CoT(任務(wù)描述)動(dòng)作描述和NL2Plan名稱已被縮短。成功的計(jì)劃用綠色標(biāo)記。失敗的計(jì)劃及其第一個(gè)無(wú)效動(dòng)作用紅色標(biāo)記。可能與用戶意圖不同或類似的可疑計(jì)劃用橙色標(biāo)記。

NL2Plan: 基于最小文本描述的魯棒性大模型驅(qū)動(dòng)任務(wù)規(guī)劃-AI.x社區(qū)

ISR領(lǐng)域的任務(wù)和計(jì)劃示例。CoT動(dòng)作描述和NL2Plan名稱已被縮短。成功的計(jì)劃用綠色標(biāo)記。失敗的計(jì)劃及其第一個(gè)無(wú)效動(dòng)作用紅色標(biāo)記。可能與用戶意圖不同或類似的可疑計(jì)劃用橙色標(biāo)記。“將頂點(diǎn)添加到集合”的動(dòng)作被實(shí)現(xiàn)為“重新配置集合”的動(dòng)作,將第一個(gè)參數(shù)添加到集合中并移除第二個(gè)參數(shù)。

NL2Plan: 基于最小文本描述的魯棒性大模型驅(qū)動(dòng)任務(wù)規(guī)劃-AI.x社區(qū)

NL2Plan Step Prompt Schemas and Examples

  • Type Extraction step

# Role
Your task is to identify the different types of objects which exist and are relevant in a domain. [Further task details.]
# Example
[Chain-of-Thought Example]
# Task
## Domain
The AI agent here is a logistics planner that has to plan to transport packages within the locations in a city through a truck and
between cities through an airplane. In a city, all the locations are connected. Similarly, cities are directly connected allowing airplanes
to travel between them. Also, there is no limit to how many packages a truck or plane can carry.
Currently, I’ve got four packages to ship. . .
## Types
First, we need types related to locations and transportation.
‘‘‘
- city: Each city contains an airport and other locations.
- location: Places within cities trucks can visit.
- airport: A location where planes land and take off.
‘‘‘
Next, we consider the transportation vehicles.
‘‘‘
- plane: A type of vehicle used for transporting packages between cities.
- truck: A type of vehicle used for transporting packages within a city.
‘‘‘
Lastly, we need the to define the items being transported.
‘‘‘
- package: An item that needs to be transported from one location to another.
‘‘‘
  • Type Hierarchy step

# Role
Your task is to identify the different types of objects which exist and are relevant in a domain. [Further task details.]
# Example
[Chain-of-Thought Example]
# Task
## Domain
The AI agent here is a logistics planner that has to plan to transport packages within the locations in a city through a truck and
between cities through an airplane. In a city, all the locations are connected. Similarly, cities are directly connected allowing airplanes
to travel between them. Also, there is no limit to how many packages a truck or plane can carry.
Currently, I’ve got four packages to ship. . .
## Types
First, we need types related to locations and transportation.
‘‘‘
- city: Each city contains an airport and other locations.
- location: Places within cities trucks can visit.
- airport: A location where planes land and take off.
‘‘‘
Next, we consider the transportation vehicles.
‘‘‘
- plane: A type of vehicle used for transporting packages between cities.
- truck: A type of vehicle used for transporting packages within a city.
‘‘‘
Lastly, we need the to define the items being transported.
‘‘‘
- package: An item that needs to be transported from one location to another.
‘‘‘
  • Action Extraction step

# Role
Your task is to identify what actions an AI Agent would have available in a domain. [Further task details.]
# Example
[Chain-of-Thought Example]
# Task
## Domain
The AI agent here is a logistics planner that has to plan to transport packages. . .
Currently, I’ve got four packages to ship. . .
##Types:
- object: Everything is an object
- city: Each city contains. . .
- location: Places within cities. . .
- airport: A location where planes. . .
- vehicle: Vehicles transport packages.
- truck: A type of vehicle. . . .
- plane: A type of vehicle. . .
- package: An item that needs to. . .
##Actions
###Package related actions
Packages need to be loaded onto vehicles and unloaded at the destination.
‘‘‘
load package
A package is loaded onto a vehicle at a location. Requires that the package and the truck to be at the same location. Example:
package 1 is loaded onto truck 1 at location 1.
‘‘‘
‘‘‘
unload package
A package is unloaded from a vehicle at a location. Requires the package to be on the vehicle and the vehicle to be at the destination
location. Example: package 2 is unloaded from plane 1 at airport 1.
‘‘‘
[Further headers and actions.]
  • Action Construction step

# Role
You are defining the preconditions and effects (represented in PDDL format) of an AI agent’s actions. [Further task details.]
# Example
[Chain-of-Thought Example]
# Task
## Domain
The AI agent here is a logistics planner that has to plan to transport packages. . .
Currently, I’ve got four packages to ship. . .
##Types:
- object: Everything is an object
- city: Each city contains. . .
- location: Places within cities. . .
- airport: A location where planes. . .
- vehicle: Vehicles transport packages.
- truck: A type of vehicle. . . .
- plane: A type of vehicle. . .
- package: An item that needs to. . .
## Future actions
The following actions will be defined later and together they make up the entire domain:
- load package: A package is loaded. . .
- unload package: A package is unloaded. . .
[Remaining actions.]
## Action
load package
A package is loaded onto a vehicle at a location. Requires that the package and the truck to be at the same location. Example:
package 1 is loaded onto truck 1 at location 1.
### Available Predicates
No predicate has been defined yet.
### Action Parameters
First, we need to know which vehicle and package are being loaded:
‘‘‘
- ?v - vehicle: The vehicle being loaded.
- ?p - package: The package being loaded.
‘‘‘
Lastly, we need to know where the loading is taking place:
‘‘‘
- ?l - location: The location where the loading happens.
‘‘‘
### Action Preconditions
To be able to load at ?l it’s specified that:
1: The vehicle is at the location.
2: The package is at the location.
For this we need a predicate:
- “at” to define where something is. This should work for both packages and vehicles, so let’s define “(at ?o - object ?l - location)”
Let’s specify this in PDDL:
‘‘‘
(and ; All these have to hold
(at ?v ?l) ; The vehicle is at the location
(at ?p ?l) ; The package is at the location
)
‘‘‘
### Action Effects
So, what happens when the action is performed?
- The package is no longer at the location
- The package is instead inside the vehicle
For this, we need a new predicate
- “l(fā)oaded” to specify when and where a package is loaded. “(loaded ?p - package ?v - vehicle)”
Specifying this in PDDL we get:
‘‘‘
(and ; All these have to hold
(not (at ?p ?l)) ; The package is not at the location
(loaded ?p ?v) ; The package is instead loaded in the vehicle
)
‘‘‘
### New Predicates
We used two new predicates. Those have to be specified and re-iterated:
‘‘‘
- (at ?o - object ?l - location): true if the object ?o (a vehicle or package) is at the location ?l
- (loaded ?p - package ?v - vehicle): true if the package ?p is loaded in the vehicle ?v
‘‘‘
  • Task Extraction step

# Role
Your task is to estimate the initial state and the goal state for a PDDL problem based on a domain description and the available
actions. [Further task details.]
# Example
[Chain-of-Thought Example]
# Task
## Domain
The AI agent here is a logistics planner that has to plan to transport packages. . .
Currently, I’ve got four packages to ship. Two are in a London storage and the rest in Paris. Those from London should be
sent to Addr1 in Berlin and to Addr2 in Paris. Those from Paris should both be moved to the London storage.
##Types:
- object: Everything is an object
- city: Each city contains. . .
- location: Places within cities. . .
- airport: A location where planes. . .
- vehicle: Vehicles transport packages.
- truck: A type of vehicle. . . .
- plane: A type of vehicle. . .
- package: An item that needs to. . .
## Predicates
- (at ?o - object ?l - location): true if the object ?o (a vehicle or package) is at the location ?l
- (loaded ?p - package ?v - vehicle): true if the package ?p is loaded in the vehicle ?v
[Further predicates.]
## Object Instances
There are four packages. The first two start in London, and the remaining two start in Paris:
‘‘‘
- L1 - package: The first London package
- L2 - package: The second London package
- P1 - package: The first Paris package
- P2 - package: The second Paris package
‘‘‘
[Further object instances.]
## State
The London packages all start in the London storage:
‘‘‘
(at L1 LStorage): The first London package location
(at L2 LStorage): The second London package location
‘‘‘
[Further initial predicates.]
## Goal
The goal is for L1 to go to Addr1 and for L2 to be delivered to Addr2, as well as for both P1 and P2 to be transported to London
storage. Here’s how we can define the goal:
‘‘‘
(and ; All these have to hold
(at L1 Addr1)) ; L1 is delivered
(at L2 Addr2)) ; L1 is delivered
(at P1 LStorage)) ; L1 is delivered
(at P2 LStorage)) ; L1 is delivered
)
‘‘‘


NL2Plan: Robust LLM-Driven Planning from Minimal Text Descriptions
https://arxiv.org/pdf/2405.04215

本文轉(zhuǎn)載自 ??PaperAgent???,作者: PaperAgent

收藏
回復(fù)
舉報(bào)
回復(fù)
相關(guān)推薦
91精品国产综合久久久蜜臀粉嫩 | 爽爽淫人综合网网站| 一本色道久久综合狠狠躁篇怎么玩| 日本a级片免费| 成人免费视频国产在线观看| 国产精品麻豆免费版| 韩国久久久久久| 久久久久久免费网| 四虎影院一区二区三区| 综合久久精品| 中日韩美女免费视频网址在线观看 | 日韩国产精品久久久久久亚洲| 78色国产精品| 国产精品一区二区美女视频免费看| 久久精品国产69国产精品亚洲| 日本在线аv| 亚洲精品国产无天堂网2021| 在线天堂视频| 欧美在线啊v一区| 欧美欧美黄在线二区| 欧美激情综合亚洲一二区| av大片免费看| 玖玖精品视频| 日韩hmxxxx| 日韩精品中文字幕第1页| 不用播放器成人网| 松下纱荣子在线观看| 亚洲日本欧美在线| 日韩精品免费视频人成| 亚洲一区三区| 亚洲一区二区三区中文字幕| 亚洲一区二区三区欧美| 中文字幕第一区二区| www.亚洲视频| 精品视频在线观看日韩| 一级二级在线观看| 亚洲人吸女人奶水| 国产一区亚洲二区三区| 99re热视频这里只精品| 久久最新免费视频| 激情综合色播激情啊| 亚洲国产午夜伦理片大全在线观看网站 | 成人疯狂猛交xxx| 亚洲肉体裸体xxxx137| 国模吧一区二区三区| 高清精品视频| 日韩av快播网址| 久久综合国产| 成人免费视频观看视频| 亚洲巨乳在线| 欧洲精品一区色| 国产乱码精品一区二区三区av | 日韩三级毛片| 国产精品吹潮在线观看| 欧洲杯什么时候开赛| 成人xvideos免费视频| 久久久久亚洲| 蜜桃久久影院| 国模大尺度一区二区三区| 一卡二卡三卡视频| 国产日韩欧美精品电影三级在线 | 亚洲精品动漫100p| av在线不卡精品| 亚洲91精品在线观看| 98精品视频| 日韩av中文字幕在线免费观看| 91在线免费视频观看| 亚洲 国产 欧美一区| 91亚洲精品久久久蜜桃| 日本1区2区3区中文字幕| 一本大道av伊人久久综合| 1区2区在线观看| 日韩有码在线观看| 视频一区欧美| 日韩亚洲不卡在线| 91片在线免费观看| 中文字幕毛片| 欧美一区二区播放| 高清亚洲高清| 国产自产女人91一区在线观看| 国产精品久久777777毛茸茸 | 国产伦精品一区二区三区高清| 美女诱惑一区| 国产一区二区视频免费在线观看| 亚洲成人资源网| 中文一区一区三区高中清不卡免费| 欧美国产亚洲视频| 亚洲三级观看| 蜜桃免费在线视频| 91精品国产福利在线观看| 亚洲高清999| 精品日本一区二区三区在线观看| 粉嫩av一区二区三区在线播放 | 国产激情精品久久久第一区二区 | 欧美6一10sex性hd| 欧美成人午夜激情视频| 欧美三级不卡| 日本久久久精品视频| 欧美色图在线观看| 亚洲欧洲日韩精品在线| 国产精品对白一区二区三区 | 成人黄色免费片| 国产另类ts人妖一区二区| 三上悠亚在线免费观看| 国产亚洲精品久久久久动| 一本一本久久a久久综合精品| 无码日本精品xxxxxxxxx| 色一情一乱一乱一91av| 国产午夜久久av| 亚洲欧洲一二三| 欧美日韩中文字幕日韩欧美| 人人精品久久| 伊人久久大香线蕉成人综合网| 亚洲成av人片在线观看| 亚洲一区网址| 可以看毛片的网址| 精品少妇一区二区三区视频免付费| 国产一区二区在线| 日本999视频| 亚洲视频综合网| 国产亚洲精品v| 在线观看av片| 欧洲亚洲免费视频| 久久午夜电影网| xx欧美视频| 亚洲欧美精品| 91.com视频| 狠狠爱www人成狠狠爱综合网| 上原亚衣加勒比在线播放| 色哟哟网站入口亚洲精品| 免播放器亚洲| melody高清在线观看| 国产精品久久久久久久久久久久久| 91麻豆免费观看| 国产综合av| 无码人妻aⅴ一区二区三区日本| 欧美一区二区三区在线| 国产精品a久久久久| 中文字幕av网| 欧美中文字幕视频| 中文字幕av在线一区二区三区| 电影久久久久久| 波多野结衣 作品| 亚洲精品一区二区网址| 日本成人在线不卡视频| 大片免费在线观看| 欧美一级日本a级v片| 欧美日韩国产一级片| 国产精品av一区二区| 国产高清视频在线| 成人久久18免费网站漫画| 色婷婷久久一区二区三区麻豆| 日本一区二区免费高清| 中文字幕不卡| 99国精产品一二二线| 色噜噜狠狠色综合欧洲selulu| 亚洲一区二区日韩| 国产特黄在线| 免费h精品视频在线播放| 欧美久久久久久久久中文字幕| 国内精品嫩模av私拍在线观看| 欧美zozo| 狼狼综合久久久久综合网| 欧美不卡123| 国产精品影音先锋| 北岛玲精品视频在线观看| 久久久久久久久久久久91| 欧洲日韩成人av| 精品国产精品自拍| 亚洲激情专区| 成人一级福利| 国产综合av在线| 88国产精品欧美一区二区三区| 一区二区在线免费| 欧美日韩亚洲三区| 在线中文字幕视频观看| 人妻无码一区二区三区四区| 不卡中文字幕av| 午夜视频久久久久久| 国产亚洲毛片| 全球最大av网站久久| 手机在线成人免费视频| 国产精品视频资源| 欧美日韩电影一区| 国产二区国产一区在线观看| 亚洲乱码一区| 懂色一区二区三区| 男人草女人视频| 欧美亚洲日本黄色| 欧美日韩午夜影院| 成人动漫一区二区| 同性恋视频一区| yiren22亚洲综合伊人22| 在线观看国产一区| 国语自产精品视频在线看抢先版图片| 岛国视频午夜一区免费在线观看| 日韩中文字幕一区二区三区| 日韩有吗在线观看| 91短视频版在线观看www免费| 亚洲国产成人精品无码区99|