国产精品电影_久久视频免费_欧美日韩国产激情_成年人视频免费在线播放_日本久久亚洲电影_久久都是精品_66av99_九色精品美女在线_蜜臀a∨国产成人精品_冲田杏梨av在线_欧美精品在线一区二区三区_麻豆mv在线看

亞馬遜“盲眼”機器人30秒跑酷首秀驚艷!華人學者領銜

人工智能 新聞
OmniRetarget使強化學習策略能夠在復雜環境中學習長時程的“移-操一體”(loco-manipulation)技能,并實現從仿真到人形機器人的零樣本遷移。

你見過這樣的“盲眼”機器人demo嗎?

它在完全看不見的情況下——沒有攝像頭、雷達或任何感知單元——主動搬起9斤重的椅子,爬上1米高的桌子,然后翻跟頭跳下。

不光耍酷,干起活來,搬箱子也不在話下。

還能一個猛子跳上桌子。

手腳并用爬坡也照樣OK。

這些絲滑小連招來自亞馬遜機器人團隊FAR(Frontier AI for Robotics)發布的首個人形機器人(足式)研究成果——OmniRetarget

OmniRetarget使強化學習策略能夠在復雜環境中學習長時程的“移-操一體”(loco-manipulation)技能,并實現從仿真到人形機器人的零樣本遷移。

網友表示:又能跑酷、還能干活,這不比特斯拉的擎天柱強10倍?

接下來,讓我們一起看看他們是怎么做到的吧!

基于交互網格的動作重定向方法

總的來說,OmniRetarget是一個開源的數據生成引擎,它將人類演示轉化為多樣化、高質量的運動學參考,用于人形機器人的全身控制。

與通常忽略人-物體/環境之間豐富的交互關系的動作重定向方法不同,OmniRetarget通過一個交互網格(interaction mesh)來建模機器人、物體和地形之間的空間和接觸關系,從而保留了必要的交互并生成運動學可行的變體。

此外,保留任務相關的交互使得數據能夠進行高效的數據增強,進而從單個演示推廣到不同的機器人本體、地形和物體配置,以減少不同變體的數據收集成本。

在與其他動作重定向方法的對比中,OmniRetarget在所有關鍵方面:硬約束、物體交互、地形交互、數據增強表現出了全面的方法優勢。

接下來就讓我們具體來看。

首先,OmniRetarget通過基于交互網格(interaction-mesh)的約束優化,將人類示范動作映射到機器人上。

在研究中,交互網格被定義為一個體積結構,用于保持身體部位、物體與環境之間的空間關系。

交互網格的頂點由關鍵的機器人或人類關節以及從物體和環境中采樣的點組成。

通過收縮或拉伸該網格,研究可以在保持相對空間結構和接觸關系的前提下,將人類動作映射到機器人上。

在交互網格的構建過程中,研究人員對用戶定義的關鍵關節位置以及隨機采樣的物體和環境點應用德勞內四面體化(Delaunay tetrahedralization)。

(注:為了更精確地保持接觸關系,物體和環境表面的采樣密度高于身體關節的采樣密度。)

研究通過最小化源動作(人類示范關鍵點及對象/環境采樣點)與目標動作(機器人對應關鍵點及相同對象/環境點)之間的拉普拉斯形變能(Laplacian deformation energy),讓機器人動作盡量保持與人類示范一致的空間和接觸關系。

拉普拉斯坐標衡量每個關鍵點與其鄰居點之間的相對關系,從而在重定向動作時保留局部空間結構和接觸關系。

在每個時間幀,算法通過求解約束非凸優化問題來獲得機器人配置,包括浮動底座的姿態和平移以及所有關節角度,同時滿足碰撞避免、關節和速度限制,以及防止支撐腳滑動等硬約束。

優化則使用順序二次規劃風格的迭代方法,每幀以上一幀的最優解作為初值,以保證時間上的連續性和平滑性。

由此,基于交互網格的方法可適配不同機器人形態和多種交互類型,只需調整交互網格中的關鍵點對應關系和碰撞模型。

其次,每一次空間和形狀的增強都被視為一個新的優化問題,從而生成多樣化的軌跡。

具體來說,OmniRetarget通過參數化地改變物體配置、形狀或地形特征,將單個人類演示轉化為豐富多樣的數據集。

對于每個新場景,研究都會使用固定的源動作集和增強后的目標動作集重新求解優化問題:通過最小化交互網格的形變,可以得到一組新的、運動學上有效的機器人動作,同時保留原始交互中的基本空間結構和接觸關系。

在機器人-物體的交互中,研究通過增強物體的空間位置和形狀來生成多樣化的交互(位姿和平移進行增強,并在局部坐標系中構建交互網格)。

為避免整個機器人隨物體發生簡單剛體變換,研究還在優化中加入約束,將下半身固定到標稱軌跡,同時允許上半身探索新的協調方式,從而生成真正多樣化的交互動作。

在機器人-地形的交互中,研究通過改變平臺的高度和深度,并引入額外約束來生成多樣化的地形場景。

最后,在建立了高質量運動學參考的方法之后,研究使用強化學習來彌補動力學差異,即訓練一個低層策略,將這些軌跡轉化為物理可實現的動作,實現從仿真到硬件的零次遷移。

得益于干凈且保留交互的參考數據,OmniRetarget僅需最小化獎勵即可高保真跟蹤,無需繁瑣調參。

訓練時,機器人無法直接感知明確的場景和物體信息,僅依賴本體感知和參考軌跡作為復雜任務的先驗知識:

  • 參考動作: 參考關節位置/速度,參考骨盆位置/方向誤差
  • 本體感受 : 骨盆線速度/角速度,關節位置/速度
  • 先前動作: 上一時間步的策略動作

在獎勵方面,研究使用五類獎勵(身體跟蹤、物體跟蹤、動作速率、軟關節限制、自碰撞)來保證動作質量,同時結合物體參數和機器人狀態的領域隨機化提升泛化能力。

此外,相似動作會分組訓練以加快策略收斂,不同的任務(如搬箱和平臺攀爬)則采用不同策略設置。

實驗結論

在實驗方面,研究團隊首先展示了OmniRetarget能實現的復雜行為的廣度,包括自然的物體操作和地形交互。

然后提供了針對最先進基線的定量基準測試,評估了在運動學質量指標和下游策略性能方面的表現。

正如我們開頭所展示的,搭載OmniRetarget的宇樹G1實現了一個類似波士頓動力的跑酷動作。

這個持續 30 秒、復雜的多階段任務突顯了OmniRetarget生成精確且通用參考動作的能力。

在可擴展性上,OmniRetarget在完整增強數據集上訓練和評估成功率為79.1%,與僅使用標稱動作的82.2%相近,說明運動學增強在不顯著降低性能的情況下實質性擴大了動作覆蓋范圍。

最后,研究團隊將OmniRetarget與PHC、GMR和VideoMimic等開源重定向基線進行了比較。

(注:實驗使用OMOMO、內部MoCap和LAFAN1數據集進行評估)

實驗結果顯示,在運動學質量上,OmniRetarget在穿透、腳部打滑和接觸保留指標上整體優于所有基線,即使偶爾輕微穿透也能被 RL 修復。

下游強化學習策略評估表明,高質量重定向動作直接提升策略成功率,OmniRetarget在所有任務中均領先基線 10% 以上,且表現更穩定。

One more thing

值得一提的是,OmniRetarget背后的Amazon FAR (Frontier AI & Robotics)成立僅七個多月,由華人學者領銜。

FAR的前身是著名機器人技術公司Covariant,創始人均為出自UCBerkeley的Pieter AbbeelPeter ChenRocky Duan 和Tianhao Zhang

(注:Pieter Abbeel是Rocky Duan和Tianhao Zhang的導師)

其中,Pieter Abbeel可謂是機器人領域的大佬,他是伯克利機器人學習實驗室(Berkeley Robot Learning Lab)主任以及伯克利人工智能研究實驗室(Berkeley AI Research, BAIR)的聯合主任。

早在去年8月,亞馬遜就與Covariant達成協議,獲得該公司技術的“非排他性”許可,聘用Covariant四分之一的員工,同時Covariant的創始人Pieter Abbeel、Peter Chen、和Rocky Duan也將加入亞馬遜。

目前,由Rocky Duan擔任Amazon FAR研究負責人。

而OmniRetarget這次令人驚艷的亮相,正是Amazon FAR 在人形機器人(足式)領域的首次嘗試。

不得不說,亞馬遜(Amazon)的機器人,真的有點驚艷(Amazing)。

已經開始期待他們之后的工作了!

責任編輯:張燕妮 來源: 量子位
相關推薦

2023-12-27 14:07:00

模型訓練

2015-08-02 21:57:29

捷通靈

2022-05-23 13:36:02

機器人核酸

2025-04-03 08:30:00

AI科學論文

2021-03-25 09:25:55

機器人人工智能系統

2019-07-28 21:35:40

計算機互聯網 技術

2020-09-17 13:07:16

阿里物流機器人

2021-05-14 13:42:45

機器人人工智能技術

2020-10-15 15:42:00

人工智能

2022-09-29 15:37:50

機器人AI

2025-09-26 10:40:33

2021-07-22 10:17:55

加密機器人加密貨幣機器人

2023-04-06 15:45:00

博士論文
點贊
收藏

51CTO技術棧公眾號

超碰超碰97| 日韩中文在线播放| 久久草av在线| 国产成人精品av| 成人勉费视频| 欧美日韩高清一区二区不卡| 成年人视频网站| 91视频在线观看免费| 日韩免费中文专区| 中文无码久久精品| 久久乐国产精品| 素人啪啪色综合| 精品88久久久久88久久久| 中文字幕2018| 欧美国产精品一区二区三区| 97超碰人人爱| 亚洲欧美视频一区二区三区| 91久久精品日日躁夜夜躁国产| 日本一区二区乱| 国产亚洲精品美女久久久| 麻豆传媒在线观看| 色综合天天综合在线视频| 蜜桃传媒av| 国产精品无码永久免费888| 国产美女在线一区| 成人久久18免费网站麻豆| 日本精品免费视频| 激情小说亚洲一区| 正在播放一区| 精品一二三四在线| 国产又黄又爽免费视频| 久久精品国产亚洲aⅴ| 亚洲精品日韩精品| 久久99日本精品| 国产高清不卡无码视频| 国产成人在线影院 | 国产在线一区二区| 午夜在线视频免费观看| 国产精品综合一区二区三区| 欧美久久久久久久久久久久久久| fc2成人免费人成在线观看播放| 免费一级特黄特色毛片久久看| 成av人片一区二区| 超碰在线97免费| 亚洲国产裸拍裸体视频在线观看乱了| 色老板亚洲精品一区| 午夜久久久久久| 国产免费a∨片在线观看不卡| 欧美日韩国产高清一区| 美女av在线免费看| 中文字幕日韩av| 国偷自产视频一区二区久| 国产精品27p| 一本色道久久精品| 三年中国中文在线观看免费播放| 成人激情动漫在线观看| av在线无限看| 精品久久久视频| 成人福利影视| 欧美激情xxxx| 欧美激情偷拍| 一区二区三区国产福利| 中文字幕国产一区二区| 欧美挠脚心网站| 日韩精品在线免费| 97青娱国产盛宴精品视频| 亚洲一区二区三区久久| 国产真实乱子伦精品视频| 在线成人私人影院| 欧美精品xxxxbbbb| 国产日本亚洲| 国产久一道中文一区| 成人午夜在线免费| 亚洲欧洲成人| 在线播放亚洲激情| 久久综合国产| www.夜夜爱| 色狠狠av一区二区三区| 在线免费三级电影网站| 日本久久精品视频| 麻豆成人免费电影| 午夜在线免费视频| 亚洲小视频在线| 97精品国产| www国产精品内射老熟女| 日本乱人伦一区| 日本免费精品| 日韩国产精品一区二区三区| 成人欧美一区二区三区白人| 麻豆网站在线免费观看| 九九热这里只有在线精品视| 亚洲国产免费看| 97超超碰碰| 日本暖暖在线视频| 亚洲少妇激情视频| 91精品成人| 欧美在线一区视频| 在线中文字幕不卡| 亚洲欧美日本国产| 色999日韩自偷自拍美女| 亚洲影院理伦片| 色综合久久久| 日韩精品无码一区二区三区| 亚洲欧美偷拍卡通变态| 国产超碰精品| 欧洲成人一区二区| 午夜欧美在线一二页| 日韩三级久久| 成人黄色片免费| 欧美精品色综合| 日韩精品二区| 人人做人人爽| 美女视频久久黄| 国产一区久久久| 在线三级电影| 国产精品加勒比| 亚洲成人av在线电影| 精品国产乱码久久久久久樱花| 亚洲国产成人不卡| 欧美性色黄大片| 偷拍欧美精品| 天天草夜夜草| 欧美一性一乱一交一视频| 成人激情小说乱人伦| 绿色成人影院| 尤物一区二区三区| 欧美一区二区久久| 欧美体内she精视频在线观看| 最新理论片影院| 日本最新高清不卡中文字幕| 国产精品二三区| 999久久精品| 在线免费视频一区| 久热精品在线视频| 久久一二三国产| 国产亚洲观看| 久久久久狠狠高潮亚洲精品| 亚洲人a成www在线影院| 免费成人小视频| 黄色的视频在线观看| 欧美少妇一区| 亚洲аv电影天堂网| 久久一二三区| 97超碰在线免费| 99精品视频网站| 亚洲欧美中文另类| 国产99久久久精品| 成人在线视频免费| 人妻熟妇乱又伦精品视频| 精品国产一区二区在线| 91麻豆福利精品推荐| 91国内精品白嫩初高生| 成人黄18免费网站| 国产精品男人爽免费视频1| 亚洲成年人影院| 亚洲欧美伊人| 在线中文字幕第一页| 一区二区免费在线观看| 一区二区三区日韩在线| 久久亚洲春色中文字幕久久久| 日本一区精品视频| 激情小说激情视频| 成人网欧美在线视频| 欧美日韩精品三区| 久久精品国产亚洲aⅴ| 国产资源一区| 免费在线观看视频| 国产精品对白刺激久久久| 亚洲国产成人精品久久| 91在线高清观看| 成人激情在线| 91国内在线| 免费观看日韩毛片| 国产精品中文久久久久久久| 欧美视频在线播放| 老司机午夜免费精品视频| 69堂免费精品视频在线播放| 在线观看av网页| 99热99热| 精品中文视频在线| 国产精品国产三级国产三级人妇 | 最近2019年日本中文免费字幕 | av资源网一区| 国产精品99久久免费观看| 日韩黄色网址| 欧美婷婷久久| 久久av中文字幕| 欧美日韩一区二区免费在线观看| 国产精品久久国产愉拍| 欧美亚洲人成在线| 美女毛片在线看| 国产a级片网站| 97视频中文字幕| 精品国产欧美一区二区三区成人| 性做久久久久久免费观看| 美女精品一区二区| 国产精品羞羞答答在线观看| gratisvideos另类灌满| 男人午夜天堂| 国产精品8888|